
Section 7.1

Goals for 7.1:

• Be able to convert an nth order differential equation to a system of first order differential
equations, and (where possible) convert a system of two differential equations to a single
second order differential equation.

• Understand where systems of differential equations come from. We’ve seen: Predator-Prey,
system of springs, system of tanks. In general, any time we’re modeling the interaction of
states, we’ll get a system of differential equations.

• Understand the extension of equilibria to systems of autonomous differential equations.

Problems 7.1, #2, 5, 14, 21

2. Convert to a system of first degree equations: u′′ + 0.5u′ + 2u = 2 sin(t). SOLUTION: Let x = u, y = u′

Then:
x′ = y
y′ = −2x− 0.5y + 3 sin(t)

5. Convert to a system of first order differential equations with the initial value: u′′+ p(t)u′+ q(t)u = g(t),
u(0) = u0, u′(0) = u′0. SOLUTION: Let x = u, y = u′. Then:

x′ = y
y′ = −q(t)x− p(t)y + g(t)

with initial values: x(0) = u0, y(0) = u′0

14. Put the following system into a single second order equation.

x′1 = a11x1 + a12x2 + g1(t)
x′2 = a21x1 + a22x2 + g2(t)

We solve the first equation for x2, use it to get an expression for x′2, then substitute these expressions
into the second equation:

If a12 6= 0, then we get the following for x2 and x′2:

x2 = 1
a12

(x′1 − a11x1 − g1(t))

x′2 = 1
a12

(x′′1 − a11x
′
1 − g′1(t))

Substituting these expressions into the second original equation yields:

1
a12

(x′′1 − a11x
′
1 − g′1(t)) = a21x1 + a22

1
a12

(x′1 − a11x1 − g1(t)) + g2(t)

Simplifying, we get:

x′′1 − (a11 + a22)x′1 + (a11a22 − a21a12)x1 = g′1(t)− a22g1(t) + a12g2(t)

If a12 = 0, we would perform a similar procedure, but use the second equation and solve for x1. Here
we would need to assume that a21 6= 0

The same procedure can be carried out if aij are functions of time, but we would want to be sure that
division would not be by zero.

NOTE: We cannot start this problem by assuming that x1 = u and x2 = u′. This would imply that
x′1 = x2, which is probably not true, given that

x′1 = a11x1 + a12x2 + g1(t)
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21. We started this one in class. From the model of the two tanks, we get the following system of differential
equations:

Q′1 = 1.5 + 1.5
20 Q2 − 3

30Q1

Q′2 = 3 + 3
30Q1 − 4

20Q2

Hint if you’re not sure how we got this: Be sure your units of measure are lining up. Note that, since
Q1 and Q2 are in ounces, and the time is given is minutes, you should have that Q′1 and Q′2 are being
measured in ounces per minute.

We find equilibrium where Q′1 = 0 and Q′2 = 0: In matrix form, we solve:[ −1
10

3
40

1
10

−1
5

] [
Q1

Q2

]
=
[
−1.5
−3

]
so we get the equilibria at QE1 = 42, QE2 = 36. Lastly, let x1 = Q1 −QE1 , x2 = Q2 −QE2 . Then:

x′1 = Q′1 = 1.5 +
1.5
20
Q2 −

3
30
Q1 = 1.5 +

1.5
20

(x2 + 36)− 3
30

(x1 + 42) =
−1
10
x1 +

3
40
x2

and
x′2 = Q′2 = 3 +

3
30
Q1 −

4
20
Q2 = 3 +

3
30

(x1 + 42)− 4
20

(x2 + 36) =
1
10
x1 +

−1
5
x2
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Section 7.2

Goals for 7.2:

• Recall the following matrix and vector operations (especially 2× 2 and 3× 3): AT , AB,Ax

• Be able to solve Ax = b, especially if A is 2× 2 or 3× 3, and especially if b = 0.

• New operations: x′(t), A′(t),
∫ b

a

A(t) dt

• Product Rule: (AB)′(t) = A′(t)B(t) +A(t)B′(t), and (Ax)′(t) = A′(t)x(t) +A(t)x′(t)

• Be able to verify that something is a solution to a given differential equation.

Problems 7.2, #22, 23, 26

22.  7et 5e−t 10e2t

−et 7e−t 2e2t

8et 0 −e2t

 ,

 2e2t − 2 + 3e3t 1 + 4e−2t − et 3e3t + 2et − e−4t

4e2t − 1− 3e3t 2 + 2e−2t + et 6e3t + et + e−4t

−2e2t − 3 + 6e3t −1 + 6e−2t − 2et −3e3t + 3et − 2e−4t


 et −2e−t 2e2t

2et −e−t −2e2t

−et −3e−t 4e2t

 ,

 (e− 1) 2(1− e−1) 1
2 (e2 − 1)

2(e− 1) (1− e−1) − 1
2 (e2 − 1)

−(e− 1) 3(1− e−1) (e2 − 1)


23. First, compute x′ using the given x, then compare with Ax:

x′ =
[

4
2

]
2e2t =

[
8
4

]
e2t

and:

Ax =
[

3 −2
2 −2

] [
4
2

]
e2t =

[
12− 4
8− 4

]
e2t =

[
8
4

]
e2t

26. First, compute Ψ′ using the given Ψ, then compare with AΨ:

Ψ′ =
[
−3e−3t 2e2t

12e−3t 2e2t

]
and:

AΨ =
[

1 1
4 −2

] [
e−3t e2t

−4e−3t e2t

]
=
[

(1− 4)e−3t (1 + 1)e2t

(4 + 8)e−3t (4− 2)e2t

]
=
[
−3e−3t 2e2t

12e−3t 2e2t

]
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Section 7.3

Goals for 7.3:

• Understand linear independence, and the difference between linearly independent vectors and
linearly independent solutions.

• Recall how to compute eigenvalues and eigenvectors:

1. Solve for λ: det(A− λI) = 0
2. For each λ, solve for v: (A− λI)v = 0.

• Understand what it means to diagonalize a matrix.

Problems 7.3, #14, 25

14. Let x(1) = (et, tet)T ,x(2) = (1, t)T Show that x(1)(t),x(2)(t) are linearly dependent for any fixed t:

W [x(1),x(2)](t) =
∣∣∣∣ et 1
tet t

∣∣∣∣ = et(t− t) = 0

NOTE: The Wronskian is checking for linear dependence pointwise. If the Wronskian for two functions
is non-zero somewhere, then that suffices to say that the functions are linearly independent. If the
Wronskian is zero for all t, we cannot say anything about independence.

For the full interval, we are trying to solve:

c1

[
et

tet

]
c2

[
1
t

]
= 0, for all t

But this implies that c1et + c2 = 0 for all t, so c1 = 0. If c1 = 0, c2 = 0. Thus, the only solution is
trivial.

This is a nice example showing the difference between linearly independent vectors and linearly inde-
pendent solutions.

25. For each problem, T is the matrix of eigenvectors, and D is the matrix with eigenvalues along the
diagonal. Below are listed the eigenvalues and eigenvectors.

Although there are a lot of computations involved in these problems, they combine everything we need
to know about eigenvalues, eigenvectors, and diagonalization. It’s therefore a very useful exercise to
check your computational abilities.

(a) (15):

T =
[

1 1
3 1

]
, D =

[
2 0
0 4

]
,

(b) (16):

T =
[

1 1
1− i 1 + i

]
, D =

[
1 + 2i 0

0 1− 2i

]
,

(c) (18):

T =
[

1 1
i −i

]
, D =

[
0 0
0 2

]
,
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