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Section 7.1

Goals for 7.1:

e Be able to convert an n'" order differential equation to a system of first order differential
equations, and (where possible) convert a system of two differential equations to a single
second order differential equation.

e Understand where systems of differential equations come from. We've seen: Predator-Prey,
system of springs, system of tanks. In general, any time we’re modeling the interaction of
states, we'll get a system of differential equations.

e Understand the extension of equilibria to systems of autonomous differential equations.

Problems 7.1, #2, 5, 14, 21

Convert to a system of first degree equations: u” + 0.5u' + 2u = 2sin(t). SOLUTION: Let = u,y =’
Then:

/

¥ =y
y = —2x— 0.5y + 3sin(t)

Convert to a system of first order differential equations with the initial value: v” + p(t)u' + q(t)u = g(t),
u(0) = ug, u'(0) = uy. SOLUTION: Let = u, y = /. Then:

=y
Yy = —q(t)z —p(t)y + g(t)

with initial values: 2(0) = g, y(0) = uj

Put the following system into a single second order equation.

ry = a4 arpxs + g1(t)
xh = anr + anry + go(t)

We solve the first equation for x5, use it to get an expression for zf, then substitute these expressions
into the second equation:

If a12 # 0, then we get the following for x5 and z5:

Ty = (2] —anz — gi(t))

1
ai2
xh = ﬁ (z7 —anzy — g1(1))

Substituting these expressions into the second original equation yields:

1 1
— (2] —ana} — g1 () = ag171 + aze— (¥} — an1@1 — g1 (1)) + g2(t)
aio a12
Simplifying, we get:

z — (a1 + a22)x] + (a11a22 — az1a12)x1 = g1 (t) — aseg1(t) + aiag2(t)

If a;2 = 0, we would perform a similar procedure, but use the second equation and solve for x;. Here
we would need to assume that as; # 0

The same procedure can be carried out if a;; are functions of time, but we would want to be sure that
division would not be by zero.

NOTE: We cannot start this problem by assuming that z; = u and x9 = u’. This would imply that
x} = 9, which is probably not true, given that

Ty = anw + a122 + g1(t)



21. We started this one in class. From the model of the two tanks, we get the following system of differential
equations:

_ 1.5 3
Q:l =15 ‘FS%QQ Y 35@1
Qy =3+ 3501 — 53Q2
Hint if you’re not sure how we got this: Be sure your units of measure are lining up. Note that, since

@1 and Q3 are in ounces, and the time is given is minutes, you should have that @} and @ are being
measured in ounces per minute.

We find equilibrium where @] = 0 and Q% = 0: In matrix form, we solve:

EEAIFAN Y

so we get the equilibria at Q¥ = 42, Q¥ = 36. Lastly, let 21 = Q1 — QF, 25 = Q2 — QF. Then:

—

sl-5

15 3 15 3 - 3
N =0 T @5 + 5g (2 4 36) = g5 (@1 +42) = Jran + oo
d
an x/_Q/_g‘FiQ —iQ —3—}—3(33 +42)_i(33 +36)—i$ _|___1$
R T DT R ) R 202 0t s



Section 7.2

Goals for 7.2:

e Recall the following matrix and vector operations (especially 2 x 2 and 3 x 3): AT  AB, Az
e Be able to solve Ax = b, especially if A is 2 x 2 or 3 x 3, and especially if b = 0.

b
New operations: &'(t), A'(t), / A(t) dt

Product Rule: (AB)/(t) = A'(t)B(t) + A(t)B'(t), and (Az)'(t) = A'(H)x(t) + A(t)z'(t)

Be able to verify that something is a solution to a given differential equation.

Problems 7.2, #22, 23, 26

22.
7et  bSe~t 10e* 2e% — 2 4 3e3t 144e 2t — ¢t 3e3t 4 2et — e
—et Te7t 2% |, 4e?t — 1 — 3e¥ 222 ¢t 6e3t + et 4 e~
8ef 0 —e? —2e% — 3463 —146e 2 — 2! —3e3t 4 3et — 2
el —2e7t  2e% (e—1) 2(1—e?) %(e2 —1)
2et —eTt —2e* || 2—1) (1—et) —5(*—-1)
—el —3e7t  4e* —(e—1) 3(1—e7t) (e —1)

23. First, compute @’ using the given x, then compare with Ax:

4 8
oo [ 4] [ 3]
2 4

|3 =2 40 o [ 12—=4 | o | 8| o
Aw_[2 —2}[2}6_[8—4}6_ 4 ¢
26. First, compute ¥’ using the given ¥, then compare with AW:

—36_3t 2€2t
1273 2% ]

and:

|

and:

—3e73t 2%
12e73t  2¢2
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Section 7.3

Goals for 7.3:
e Understand linear independence, and the difference between linearly independent vectors and
linearly independent solutions.

e Recall how to compute eigenvalues and eigenvectors:

1. Solve for A: det(A — AI) =0
2. For each A, solve for v: (A — Al)v = 0.

e Understand what it means to diagonalize a matrix.

Problems 7.3, #14, 25

Let V) = (ef, te!)T, () = (1,t)T Show that (V) (t), z?)(t) are linearly dependent for any fixed ¢:

et 1

W[m(l),$(2)}(t) - tet t

'et(tt)O

NOTE: The Wronskian is checking for linear dependence pointwise. If the Wronskian for two functions
is non-zero somewhere, then that suffices to say that the functions are linearly independent. If the
Wronskian is zero for all ¢, we cannot say anything about independence.

For the full interval, we are trying to solve:

t
cl{;t }02[ 115]207 for all t

But this implies that cje? + ¢y = 0 for all ¢, so ¢; = 0. If ¢; = 0, ¢ = 0. Thus, the only solution is
trivial.

This is a nice example showing the difference between linearly independent vectors and linearly inde-
pendent solutions.

For each problem, T is the matrix of eigenvectors, and D is the matrix with eigenvalues along the
diagonal. Below are listed the eigenvalues and eigenvectors.

Although there are a lot of computations involved in these problems, they combine everything we need
to know about eigenvalues, eigenvectors, and diagonalization. It’s therefore a very useful exercise to
check your computational abilities.

(a) (15):
(b) (16):

(c) (18):



