
Homework: 6.1, 6.2, 6.3

6.1, #19 Compute L(t2 sin(at)). Note the following, from Euler’s Formula:

t2eiat = t2 cos(at) + it2 sin(at)

so that, by the linearity of the Laplace transform:

L(t2eiat) = L(t2 cos(at)) + iL(t2 sin(at))

so that we need to compute L(t2eiat), then find the imaginary part of our answer.

Now:

L(t2eiat) =

∫ ∞
0

t2e−t(s−ia) dt

so that integration by parts yields:
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0
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∣∣∣∣∞
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(s− ia)3
e−t(s−ia)

∣∣∣∣∞
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After evaluating the limits, we see that:

L(t2eiat) =
2

(s− ia)3

which is, after multiplying top and bottom by (s+ ia)3,

L(t2eiat) =
2s3 − 6a2s

(s2 + a2)3
+ i

6as2 − 2a3

(s2 + a2)3

Therefore,

L(t2 sin(at)) =
6as2 − 2a3

(s2 + a2)3

NOTE: We can verify this by computing the Laplace transform by using Table Entry
19: (−t)nf(t)↔ F (n)(s)

6.1, #21 A straightforward computation shows this integral converges:∫ ∞
0

1

1 + t2
dt = lim

T→∞
tan−1(t)

∣∣T
0

=
π

2
− 0 =

π

2

6.1, #23 Does the integral converge or diverge?

∫ ∞
1

et

t2
dt

First, we note that:

lim
t→∞

et

t2
= lim

t→∞

et

2t
= lim

t→∞

et

2
=∞

Therefore, we suspect that the integral diverges. However, we will not be able to find
a simple antiderivative. We must instead compare this integral to an integral that is

known to diverge. (Side Remark: Note that

∫ ∞
1

1

t2
dt = 1, so this function won’t work).
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From our previous computation, we know that et

t2
goes to infinity. If we can show that,

for some constant M and some time T , et

t2
> M for all t ≥ T , then we will be almost

done!

If f(t) = et

t2
, then f ′(t) = t−2

t3
et. THIS IS VERY NICE! It says that f(t) is increasing

for all time after t = 2. Therefore, f(t) ≥ f(2), for all t ≥ 2. Therefore:

et

t2
>

e2

4
, for all t > 2

so that: ∫ ∞
2

et

t2
dt >

∫ ∞
2

e2

4
dt =

e2

4

∫ ∞
2

1 dt

The last integral above diverges. Our conclusion:

The integral

∫ ∞
1

et

t2
dt diverges.

6.2, #8 Compute the inverse Laplace transform.

8s2 − 4s+ 12

s(s2 + 4)
=
A

s
+
Bs+ C

s2 + 4

where:

A+B = 0

C = −4

4A = 12

From which A = 3, B = 5, C = −4, so:

8s2 − 4s+ 12

s(s2 + 4)
= 3

1

s
+ 5

s

s2 + 4
− 2

2

s2 + 4

so that the inverse transform is: 3 + 5 cos(2t)− 2 sin(2t)

6.2, #15 Solve y′′ − 2y′ − 2y = 0, y(0) = 2, y′(0) = 0. First, we compute the transform of both
sides to get:

s2Y − 2s− 2(sY − 2)− 2Y = 0

Y =
2s− 4

s2 − 2s− 2

We note that the roots of s2−2s−2 are −1±
√

3, which is messy to work with. We will
instead complete the square and use the table entries with hyperbolic sines and cosines
(Note: Only do this as a ”last resort”, always try to get nice factors first).

2s− 4

s2 − 2s− 2
= 2

(s− 1)

(s− 1)2 − 3
− 2√

3

√
3

(s− 1)2 − 3

so that

y(t) = et
(

2 cosh(
√

3t)− 2√
3

sinh(
√

3t)

)
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6.3, #6 Sketch f(t) = u1(t)(t− 1)− u2(t)2(t− 2) + u3(t)(t− 3)

To begin, write f(t) piecewise:

f(t) =


0, 0 ≤ t < 1
t− 1, 1 ≤ t < 2
(t− 1)− 2t+ 2, 2 ≤ t < 3
(t− 1)− 2t+ 2 + t− 3, t ≥ 3

which simplifies to:

f(t) =


0, 0 ≤ t < 1
t− 1, 1 ≤ t < 2
3− t, 2 ≤ t < 3
0, t ≥ 3

6.3, #14 Invert: e−2s

s2+s−2

First, think of this as e−2sH(s), so that the inverse transform is:

u2(t)h(t− 2)

Now we need to find h(t):

See if the denominator is easily factorable, and in this case it is: s2+s−2 = (s+2)(s−1).
Therefore,

H(s) =
1

s2 + s− 2
=

A

s+ 2
+

B

s− 1

When we solve for A,B, we get: A = −1
3
, B = 1

3
. Therefore,

h(t) =
−1

3
e−2t +

1

3
et

6.3, #20 This problem could be solved by a variety of means- the answer is 2(2t)n
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