Homework: 6.1, 6.2, 6.3

6.1, #19 Compute $\mathcal{L}(t^2\sin(at))$. Note the following, from Euler's Formula:

$$t^2 e^{iat} = t^2 \cos(at) + it^2 \sin(at)$$

so that, by the linearity of the Laplace transform:

$$\mathcal{L}(t^2 e^{iat}) = \mathcal{L}(t^2 \cos(at)) + i\mathcal{L}(t^2 \sin(at))$$

so that we need to compute $\mathcal{L}(t^2e^{iat})$, then find the imaginary part of our answer.

Now:

$$\mathcal{L}(t^2 e^{iat}) = \int_0^\infty t^2 e^{-t(s-ia)} dt$$

so that integration by parts yields:

$$\frac{-t^2}{s-ia} e^{-t(s-ia)} \Big|_0^{\infty} - \frac{2t}{(s-ia)^2} e^{-t(s-ia)} \Big|_0^{\infty} - \frac{2}{(s-ia)^3} e^{-t(s-ia)} \Big|_0^{\infty}$$

After evaluating the limits, we see that:

$$\mathcal{L}(t^2 e^{iat}) = \frac{2}{(s - ia)^3}$$

which is, after multiplying top and bottom by $(s + ia)^3$,

$$\mathcal{L}(t^2 e^{iat}) = \frac{2s^3 - 6a^2s}{(s^2 + a^2)^3} + i\frac{6as^2 - 2a^3}{(s^2 + a^2)^3}$$

Therefore,

$$\mathcal{L}(t^2 \sin(at)) = \frac{6as^2 - 2a^3}{(s^2 + a^2)^3}$$

NOTE: We can verify this by computing the Laplace transform by using Table Entry 19: $(-t)^n f(t) \leftrightarrow F^{(n)}(s)$

6.1, #21 A straightforward computation shows this integral converges:

$$\int_0^\infty \frac{1}{1+t^2} dt = \lim_{T \to \infty} \tan^{-1}(t) \Big|_0^T = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

6.1, #23 Does the integral converge or diverge? $\int_{1}^{\infty} \frac{e^{t}}{t^{2}} dt$

First, we note that:

$$\lim_{t\to\infty}\frac{\mathrm{e}^t}{t^2}=\lim_{t\to\infty}\frac{\mathrm{e}^t}{2t}=\lim_{t\to\infty}\frac{\mathrm{e}^t}{2}=\infty$$

Therefore, we suspect that the integral diverges. However, we will not be able to find a simple antiderivative. We must instead compare this integral to an integral that is known to diverge. (Side Remark: Note that $\int_{1}^{\infty} \frac{1}{t^2} dt = 1$, so this function won't work).

From our previous computation, we know that $\frac{e^t}{t^2}$ goes to infinity. If we can show that, for some constant M and some time T, $\frac{e^t}{t^2} > M$ for all $t \ge T$, then we will be almost done!

If $f(t) = \frac{e^t}{t^2}$, then $f'(t) = \frac{t-2}{t^3}e^t$. THIS IS VERY NICE! It says that f(t) is increasing for all time after t = 2. Therefore, $f(t) \ge f(2)$, for all $t \ge 2$. Therefore:

$$\frac{\mathrm{e}^t}{t^2} > \frac{\mathrm{e}^2}{4}$$
, for all $t > 2$

so that:

$$\int_{2}^{\infty} \frac{e^{t}}{t^{2}} dt > \int_{2}^{\infty} \frac{e^{2}}{4} dt = \frac{e^{2}}{4} \int_{2}^{\infty} 1 dt$$

The last integral above diverges. Our conclusion:

The integral $\int_{1}^{\infty} \frac{e^{t}}{t^{2}} dt$ diverges.

6.2, #8 Compute the inverse Laplace transform.

$$\frac{8s^2 - 4s + 12}{s(s^2 + 4)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 4}$$

where:

$$A + B = 0$$

$$C = -4$$

$$4A = 12$$

From which A = 3, B = 5, C = -4, so:

$$\frac{8s^2 - 4s + 12}{s(s^2 + 4)} = 3\frac{1}{s} + 5\frac{s}{s^2 + 4} - 2\frac{2}{s^2 + 4}$$

so that the inverse transform is: $3 + 5\cos(2t) - 2\sin(2t)$

6.2, #15 Solve y'' - 2y' - 2y = 0, y(0) = 2, y'(0) = 0. First, we compute the transform of both sides to get:

$$s^{2}Y - 2s - 2(sY - 2) - 2Y = 0$$
$$Y = \frac{2s - 4}{s^{2} - 2s - 2}$$

We note that the roots of $s^2 - 2s - 2$ are $-1 \pm \sqrt{3}$, which is messy to work with. We will instead complete the square and use the table entries with hyperbolic sines and cosines (Note: Only do this as a "last resort", always try to get nice factors first).

$$\frac{2s-4}{s^2-2s-2} = 2\frac{(s-1)}{(s-1)^2-3} - \frac{2}{\sqrt{3}}\frac{\sqrt{3}}{(s-1)^2-3}$$

so that

$$y(t) = e^t \left(2 \cosh(\sqrt{3}t) - \frac{2}{\sqrt{3}} \sinh(\sqrt{3}t) \right)$$

6.3, #6 Sketch $f(t) = u_1(t)(t-1) - u_2(t)2(t-2) + u_3(t)(t-3)$

To begin, write f(t) piecewise:

$$f(t) = \begin{cases} 0, & 0 \le t < 1\\ t - 1, & 1 \le t < 2\\ (t - 1) - 2t + 2, & 2 \le t < 3\\ (t - 1) - 2t + 2 + t - 3, & t \ge 3 \end{cases}$$

which simplifies to:

$$f(t) = \begin{cases} 0, & 0 \le t < 1\\ t - 1, & 1 \le t < 2\\ 3 - t, & 2 \le t < 3\\ 0, & t \ge 3 \end{cases}$$

6.3, #14 Invert: $\frac{e^{-2s}}{s^2+s-2}$

First, think of this as $e^{-2s}H(s)$, so that the inverse transform is:

$$u_2(t)h(t-2)$$

Now we need to find h(t):

See if the denominator is easily factorable, and in this case it is: $s^2+s-2=(s+2)(s-1)$. Therefore,

$$H(s) = \frac{1}{s^2 + s - 2} = \frac{A}{s + 2} + \frac{B}{s - 1}$$

When we solve for A, B, we get: $A = -\frac{1}{3}, B = \frac{1}{3}$. Therefore,

$$h(t) = \frac{-1}{3}e^{-2t} + \frac{1}{3}e^{t}$$

6.3, #20 This problem could be solved by a variety of means- the answer is $2(2t)^n$