
General Review Solutions

This sheet also includes problems from the previous two review sheets (Ch. 1-3 and Laplace)

1. Solve (use any method if not otherwise specified):

(a) (2x− 3x2)dxdt = t cos(t) (Seperable)∫
2x− 3x2 dx =

∫
t cos(t) dt

Integrate the right-hand side of the equation by parts, using a table:

x2 − x3 = t sin(t) + cos(t) + C

(b) y′′ + 2y′ + y = sin(3x) (Undetermined Coefficients) First, homogeneous part of the solution:

r2 + 2r + 1 = 0⇒ (r + 1)2 = 0

so that yh = c1e−t + c2te−t. Now the particular solution:

yp = A cos(3t) +B sin(3t)

Substitution into the diff. eqn. will give A = − 6
100 = − 3

50 , B = − 8
100 = − 2

25 , so:

y = c1e−t + c2te−t −
3
50

cos(3t)− 2
25

sin(3t)

(c) (x2 + xy)y′ = x2 + y2 (Homogeneous)

v + x
dv

dx
=

1 + v2

1 + v

and note that, performing long division yields∫
1 + v

1− v
dv =

∫
1− 2

1− v
dv ⇒ y

x
− 2 ln |1− y

x
| = ln |x|+ C

(d) y′′ − 3y′ + 2y = e2t (Undetermined Coeffs) We see that r = 2, 1, so yh = c1e2t + c2et. Our initial
guess for yp would be Ae2t, but its in the homogeneous part. Therefore, yp = Ate2t, and:

y = c1e2t + c2et + te2t

(e) xy′ = y + x cos2
(
y
x

)
(Homogeneous) Substituting and simplifying, we get:∫

sec2(v) dv =
∫

1
x
dx ⇒ tan(

y

x
) = ln |x|+ C

(f) x′ =
√
te−t − x (Linear- Integ. Factor)

(xet)′ = t1/2 ⇒ x =
2
3
t3/2e−t + Ce−t

(g) y′′ − xy′ − 2y = 0 (Power series, assume x0 = 0). Take y =
∑
anx

n and substitute into the
differential equation. After looking at where each power series begins, start each sum with x1:

−2y = −2a0 +
∞∑
n=1

−2anxn − xy′ =
∑

n = 1∞ − annxn y′′ = 2a2 +
∞∑
n=1

an+2(n+ 2)(n+ 1)xn

Now we get that a2 = a0, and the recursion relation:

an+2 =
1

n+ 1
an, n = 1, 2, . . .

so that:
y(x) = a0 + a1x+ a0x

2 +
1
2
a1x

3 +
1
3
a0x

4 +
1
8
a1x

5 +
1
15
a0x

6 + . . .
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(h) x′ = 2 + 2t2 + x+ t2x (Linear- Integ. Factor)

(xe−(t+(1/3)t3))′ = 2(1 + t2)e−(t+(1/3)t3)

(use a “u, du” substitution to integrate), so

x = −2 + Cet+(1/3)t3

2. Obtain the general solution in terms of α, then determine a value of α so that y(t)→ 0 as t→∞:

y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = α

The general solution is:

y =
(

2 + α

5

)
e3t +

(
3− α

5

)
e−2t

So, α = −2.

3. The Wronskian of two functions is W (t) = t2 − 4. Are the solutions linearly independent? Why or why
not? As functions, they are linearly independent on any interval not containing 0. As solutions to a
differential equation, the interval must be t > 0 or t < 0, and then the two functions could be linearly
independent solutions.

4. Compute L(t cos(t)) by using the definition of the Laplace transform. Use Euler’s formula:

teit = t cos(t) + it sin(t) so that L(teit) = L(t cos(t)) + iL(t sin(t))

Now, L(teit):∫ ∞
0

te−(s−i)t dt =
−t

(s− i)
e−(s−i)t

∣∣∣∣∞
0

− 1
(s− i)2

e−(s−i)t
∣∣∣∣∞
0

=
1

(s− i)2
=
s2 − 1 + 2is

(s2 + 1)2

so the answer is: (s2 − 1)/(s2 + 1)2

5. Write 2i and 1−3i
2+i in a+ bi form.

2i = eln(2i) = ei ln(2) = cos(ln(2)) + i sin(ln(2))

(1− 3i)(2− i)
5

=
−1
5
− 7

5
i

6. Let x′ = Ax, where A is given below. Give a complete analysis of each, including (1) Stability classifi-
cation (Poincaré), (2) Analytic solution, (3) Fundamental Matrix, (4) The Matrix Exponential (leave in
factored form), and (5) Sketch the direction field.

(a)
(

2 −5
1 −2

) Tr(A) = 0 λ1 = i CENTER
det(A) = 1 v = (5, 2− i)T
∆ = −4

x(t) = c1

[
5 cos(t)

2 cos(t) + sin(t)

]
+ c2

[
5 sin(t)

2 sin(t)− cos(t)

]

Ψ(t) =
[

5 cos(t) 5 sin(t)
2 cos(t) + sin(t) 2 sin(t)− cos(t)

]
eAt =

[
5 0
2 −1

] [
cos(t) sin(t)
− sin(t) cos(t)

]
(−1

5
)
[
−1 0
−2 5

]
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(b)
(

3 −4
1 −1

) Tr(A) = 2 λ = 1 (double) Degenerate Node
det(A) = 1 v = (2, 1)T

∆ = 0 q = (1, 0)T

x(t) = c1et
[

2
1

]
+ c2et

(
t

[
2
1

]
+
[

1
0

])

Ψ(t) =
[

2et 2tet + 1
et tet

]
eAt =

[
2 1
1 0

] [
et tet

0 et

]
(−1)

[
0 −1
−1 2

]

(c)
(

3 −2
2 −2

) Tr(A) = 1 λ = 2,−1 SADDLE
det(A) = −2 v1 = (2, 1)T

∆ = 9 v2 = (1, 2)T

x(t) = c1e2t

[
2
1

]
+ c2e−t

[
1
2

]

Ψ(t) =
[

2e2t e−t

e2t 2e−t

]
eAt =

[
2 1
1 2

] [
e2t 0
0 e−t

]
(
1
3

)
[

2 −1
−1 2

]

(d)
(
−1 −4
1 −1

) Tr(A) = −2 λ1 = −1 + 2i SPIRAL SINK
det(A) = 5 v = (2i, 1)T

∆ = −16

x(t) = c1e−t
[
−2 sin(2t)

cos(2t)

]
+ c2e−t

[
cos(2t)
sin(2t)

]

Ψ(t) = e−t
[
−2 sin(2t) 2 cos(2t)

cos(2t) cos(2t)

]
eAt = e−t

[
0 2
1 0

] [
cos(2t) sin(2t)
− sin(2t) cos(2t)

]
(−1

2
)
[

0 −2
−1 0

]

(e)
(

4 −3
8 −6

) Tr(A) = −2 λ = 0,−2 Line of Fixed Points
det(A) = 0 v1 = (3, 4)T

∆ = 4 v2 = (1, 2)T

x(t) = c1

[
3
4

]
+ c2e−2t

[
1
2

]

Ψ(t) =
[

3 e−2t

4 2e−2t

]
eAt =

[
3 4
4 2

] [
1 0

0e−2t

]
(
1
2

)
[

2 −1
−4 3

]
7. Let y′′′− y′ = te−t + 2 cos(t). Determine a suitable form for the particular solution, yp. Do not solve for

the coeffs.
r3 − r = 0⇒ r = 0, r = ±1

so yh = c1 + c2et + c3e−t. Our first guess would be: yp = (A + Bt)e−t, but Ae−t is already part of yh.
Therefore, guess that

yp1 = t(A1 +B1t)e−t yp2 = A2 cos(t) +B2 sin(t)
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8. Write the differential equation associated with Resonance and Beating. Discuss under what conditions
we can expect each type of behavior.

u′′ + ω2u = F0 cos(αt)

The differential equation has no damping term, and has a periodic forcing function. If ω = α, we get
RESONANCE. If ω 6= α, then BEATING.

9. Problem 6, p. 369. (From HW, see back of book).

10. Suppose that we have a mass-spring system modelled by the differential equation

x′′ + 2x′ + x = 0, x(0) = 2, x′(0) = −3

Find the solution, and determine whether the mass ever crosses x = 0. If it does, determine the velocity
at that instant. See if it crosses if the velocity is cut in half.

x(t) = e−t(2− t)

so that the velocity at t = 2 is −e−2. If the initial velocity is cut in half,

x(t) = e−t(2 +
t

2
)

which doesn’t cross the t−axis in positive time.

11. How is it possible to construct a fundamental set of solutions to x′ = A(t)x if we only have a computer
program that solves an initial value problem?

Solve the initial value problems: x′ = A(t)x, x(0) = ei (See Theorem 7.4.4, p. 368)

12. For problems 5-14, p. 478, determine the equilibria and classify stability based on the Poincaré diagram.
See the back of the book.

13. Let y(x) be a power series solution to (1−x)y′′+ y = 0, x0 = 0. Find the recurrence relation, and write
out the first 6 terms of y.

an =
n− 2
n

an−1 +
1

n(n− 1)
an−2

The first six terms are listed below:

a0, a1,−
1
2
a0,−

(
a0 + a1

6

)
,−
(
a0 + 2a1

24

)
,−
(a0

60
+
a1

24

)
,−
(

7a0

720
+
a1

40

)
14. Let y(x) be a power series solution to y′′ − xy′ − y = 0, x0 = 1. Find the recurrence relation and write

out the first 6 terms of y.

an =
1
n
an−2, n = 2, 3, . . .

The first six terms are:
a0, a1,

1
2
a0,

1
3
a1,

1
8
a0,

1
15
a1,

1
48
a0

15. True or False: If
dx/dt = F (x, y), dy/dt = G(x, y)

and (x∗, y∗) is a critical point, then any other solution cannot reach the critical point in finite time.
(Be sure to explain why). True. Solutions cannot cross in the phase diagram (by the existence and
uniqueness theorem).
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16. Let x′ = sin(y), y′ = sin(x) Find all equilibria, and classify the stability. The equilibria are are y = kπ,
x = kπ, and

Df =
[

0 cos(y)
cos(x) 0

]
so we have 4 choices: [

x
y

]
=
[
π + 2πk
π + 2πk

]
,

[
π + 2πk

2πk

]
,

[
2πk

2 + 2πk

]
,

[
2πk
2πk

]
For which Df is (respectively):[

0 1
−1 0

]
,

[
0 1
1 0

]
,

[
0 −1
−1 0

]
,

[
0 −1
1 0

]
In all cases, Tr(A) = 0- The determinants are 1,−1,−1, 1 (respectively), and ∆ is −4, 4, 4,−4, respec-
tively. Therefore, we would conclude that the linear analysis says that equilibria of the first and third
types are saddles and the others are centers.

17. p. 502, 1-6. Try a couple of these examples of Competing Species. (See back of book)

18. p. 503, 12(a-d). (Last HW set)

19. Analyze how the origin changes classification with respect to α if:

x′ =
(

1 α
−α −2

)
x

Done in Class.

20-29. See the Laplace Review Sheet.

30. What was the ansatz we used to obtain the characteristic equation? y(t) = ert

31. For the following differential equations, (i) Give the general solution (all possible solutions), (ii) Solve
for the specific solution, if its an IVP, (iii) State the interval for which the solution is valid.

(a) y′ = 2 cos(3x), y(0) = 2: y(x) = 2
3 sin(3x) + C, y(x) = 2

3 sin(3x) + 2, Valid for all x.

(b) y′ − 0.5y = 0, y(0) = 200: y(x) = 0 and y(x) = Ae0.5x, y(x) = 200e0.5x, Valid for all x.

(c) y′ − 0.5y = e2t, y(0) = 1: y(t) = Ae0.5t + 2
3e2t, y(t) = 1

3e0.5t + 2
3e2t, Valid for all t.

(d) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0: y(x) = 0 and y(x) = e−2x(c1 cos(x) + c2 sin(x)), y(x) =
e−2x(cos(x) + 2 sin(x)), Valid for all x.

(e) y′ = 1 + y2 tan−1(y) = x+ C, so y = tan(x+ C). Valid in a small interval about any x0.

(f) y′ = 1
2y(3 − y) Solve by seperation of variables and partial fractions. y(x) = 0 and y(x) = 3 are

two special (equilibrium) solutions. The general solution is y = 3Ae
3
2 x

1+3Ae
3
2 x

, which is valid for all x

(after we solve, we can check).

(g) sin(2x)dx + cos(3y)dy = 0 1
3 sin(3y) = 1

2 cos(2x) + C, using the existence and uniqueness theorem,
we can’t have 3y be an odd multiple of π

2 .

(h) y′′+2y′+y = 2e−t, y(0) = 0, y′(0) = 1 The general solution: e−t(c1 +c+2t+ t2), and the specific
solution is: e−t(t+ t2), Valid for all t.

(i) y′ = xy2 General solution is y = −2
x2+C . Note that the interval depends on the initial conditions!

(j) 2xy2 + 2y + (2x2y + 2x)y′ = 0 This equation is EXACT. General solution: x2y2 + 2xy = C. The
solution exists for x 6= 0 and xy 6= −1. (Otherwise we get vertical y′).

(k) 9y′′ − 12y′ + 4y = 0, y(0) = 0, y′(0) = −2 The solution is valid for all time. The specific solution is:
y(t) = −2te

2
3 t
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(l) y′′ + 4y = t2 + 3et, y(0) = 0, y′(0) = 1. The solution is valid for all time. The solution is:

y(t) =
1
5

sin(2t)− 19
4

cos(2t) +
3
5

et +
1
4
t2 − 1

8

32. For more practice in using the Method of Undetermined Coefficients, look at problems 19-26, p. 171 (all
solutions are in the back of the book).

33. Suppose y′ = −ky(y − 1), with k > 0. Sketch the phase diagram. Find and classify the equilibrium.
Draw a sketch of y on the direction field, paying particular attention to where y is increasing/decreasing
and concave up/down. Finally, get the analytic (general) solution.

The analytic solution is (solve for y):
y − 1
y

= Aekt

The equilibria are always at y = 0 (Unstable) and y = 1 (Stable). From the phase diagram, if y < 0,
then y is decreasing and concave down. If 0 < y < 1

2 , y is increasing and concave up. If 1
2 < y < 1, y is

increasing and concave down. If y > 1, y is decreasing and concave up.

34. Let my′′ + γy′ + ky = F cos(wt). What are the conditions on m, γ, k to guarantee that the solutions
exhibit beating? resonance? See Problem 8 (Sorry about doubling the question up).

35. Let y′ = 2y2 + xy2, y(0) = 1. Solve, and find the minimum of y. Hint: Determine the interval for which
the solution is valid.

The solution is (seperable equation):

y =
−1

1
2x

2 + 2x− 1

From the diff. eqn, y′ = 0 where x = −2 or y = 0. We see that y 6= 0, so a candidate for the minimum
is x = −2. We also can check that y has vertical asymptotes for x = −2±

√
6. The minimum occurs at

x = −2.

36. Problem 15, p. 199 (Done as a group quiz) We treat this problem as three seperate problems.

First, u′′+u = F0t, u(0) = 0, u′(0) = 0. The homogeneous part is uh = c1 cos(t)+c2 sin(t) Undetermined
coefficients gives up = F0t, so the solution is:

u(t) = −F0 sin(t) + F0t, 0 ≤ t ≤ π

At t = π, we want to keep u continuous, so we have: u′′ + u = F0(2π − t), u(π) = F0π, u′(π) = 2F0.
Solving this IVP yields:

u(t) = −3F0 sin(t)− F0t+ 2πF0

Finally, the last IVP has: u′′ + u = 0, u(2π) = 0, u′(2π) = −4F0, so that:

u(t) = −4F0 sin(t), t > 2π

(You can double check this solution by writing F (t) using the Heaviside function, then do Laplace).

37. Solve, and determine how the solution depends on the initial condition, y(0) = y0: y′ = 2ty2

The solution is: y(t) = −1
t2− 1

y0

38. Problem 7, p. 190 See the solution in the back of the book.
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