
STUDY GUIDE: Ch. 1-3
Boyce and DiPrima, Spring 2000

This review is organized into four main areas: Anal-
ysis, Methods, Theory, and Models.

We’ve seen that a differential equation defines a
family of functions (an initial value problem defines
a specific function). We’ve reviewed and extended the
material in Calculus IV to include theory and meth-
ods to solve first order differential equations of cer-
tain types, and to solve second order linear differen-
tial equations (with constant coefficients). We’ve gone
further into the theory to discuss when solutions exist,
and in particular (3.2/3.3) the structure of solutions
to second order linear differential equations.

1 Analysis of Solutions

1. Construct a direction field: Since y′ = f(t, y),
at each value of (t, y), we can compute the local
slope, y′(t).

2. Characterization of special direction fields:

Slopes constant along: Corresponds
to:

Vertical Lines y′ = f(x)
Horizontal Lines y′ = f(y)
Along y = mx y′ = f(y/x)

3. The Phase Diagram, and the Direction Field:
Given that y′ = f(y), we can plot y′ vs. y. This
gives us information that we can translate to the
direction field, a plot of y vs x. This informa-
tion is summarized in the table below. NOTE: df
stands for df

dy .

In Phase Diagram: In Direction Field:
y intercepts Equilibrium Solutions
+ to − crossing Stable Equilibrium
− to + crossing Unstable Equilibrium
y′ > 0 y increasing
y′ > 0 with max y is increasing fastest
y′ < 0 with min y is decreasing fastest
y′ < 0 y decreasing
y′ and df same sign y is concave up
y′ and df mixed y is concave down

4. Analysis of yh = c1er1t + c2er2t. We saw that, to
guarantee that |yh| → ∞, both exponents need
to be positive, and if |yh| → ∞, both exponents
must be negative. If the exponents are mixed in
sign, it is possible to choose combinations of c1
and c2 to force either |yh| to infinity or zero.

5. Analysis of c1 cos(wt) + c2 sin(wt). We saw that
we could write this as a single periodic function,
R cos(wt− δ), with the following conversions:

R =
√
c21 + c22, δ = Tan−1(c2/c1)

where Tan−1 is the four quadrant inverse (versus
tan−1, which returns values in (π/2,−π/2)).

6. Analysis of F
µ2−w2 (cos(µt) − cos(wt)) with µ 6=

w and as µ → w. See the section on oscillator
models.

2 Methods

1. First Order

Type: Method:
y′ = f(x)g(y) Seperation of variables
y′ = f(x)
y′ = g(y)
y′ + p(t)y = f(t) Integrating factor
y′ = f(y/x) Homogeneous

use v = y/x

M(x, y) +N(x, y) dydx Exact: My = Nx

2. Second Order

Let ay′′ + by′ + cy = f(t). Then y(t) = yh(t) +
yp(t). We solve for yh(t) by using the characteris-
tic equation, ar2 + br + c = 0. The solution then
depends on the roots:

Distinct Reals: c1er1t + c2er2t

One Real: ert (c1 + c2t)
Complex,
r = s± iw est (c1 cos(wt) + c2 sin(wt))

We have one method to solve for yp(t): The
method of undetermined coefficients.

DISCUSSION: This methods works because if we
apply the linear differential operator to polynomi-
als, exponentials, and/or sines/cosines, the out-
put is a polynomial, exponential, and/or sines
and cosines. Therefore, we guess that yp is of
the same type as f(t).

CAUTION: If f(t) appears in the homogeneous
part of the solution, multiply the ansatz by t until
it doesn’t. Also, if f(t) is a sum of functions, we
can solve for each seperately.
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3 Theory

1. Existence and Uniqueness

(a) Linear:
y′+p(t)y = f(t) at (t0, y0): If p, f are contin-
uous on an interval I that contains t0, then
there exists a unique solution to the initial
value problem, (whose derivative is contin-
uous), and that solution persists on the full
interval I.
y′′+p(t)y′+q(t)y = f(t) at (t0, y0): If p, q, f
are continuous on an interval I containing t0,
then there exists a unique solution to the in-
tial value problem, (whose second derivative
is continuous), and that solution persists on
the full interval I.

(b) Nonlinear: y′ = f(t, y), (t0, y0):

i. If f is continuous on a small rectangle
containing (t0, y0), then there exists a
solution to the initial value problem.

ii. If ∂f/∂y is continuous on that small
rectangle containing (t0, y0), then that
solution is unique.

iii. We can only guarantee that the solu-
tion persists on a small interval about
(t0, y0). To find the full interval, we
need to actually solve the initial value
problem.

2. Linear Operators1, Linear Independence, Wron-
skian:

CONTEXT: nth order linear homogeneous differ-
ential equations, like y′ + p(t)y = 0 and y′′ +
p(t)y′ + q(t)y = 0.

GOAL: Know what it means to have linearly inde-
pendent functions (to define a fundamental set),
and to know how many functions are necessary to
form a fundamental set. Understand the role of
the Wronskian and Abel’s Theorem in this pro-
cess.

(a) Definition: A set of functions is linearly in-
dependent if the only solution (on the full
interval I) to:

c1y1(t) + c2y2(t) + . . .+ ckyk(t) = 0

is the trivial solution:
c1 = c2 = . . . = ck = 0.

1The idea of a linear operator and the connections to linear
algebra were presented mainly to remind you of what we did in
linear algebra, and to facilitate your understanding of the new
material. It will not appear on the exam

(b) From the definition, we can construct a set
of k equations in k unknowns to form the
system of equations:

c1y1(t) + c2y2(t) + . . .+ ckyk(t) = 0

c1y
′
1(t) + c2y

′
2(t) + . . .+ cky

′
k(t) = 0

. . . . . .

c1y
(k−1)
1 (t) + c2y

(k−1)
2 (t) + . . .+ cky

(k−1)
k (t) = 0

From which we form a matrix equation:
y1(t) y2(t) . . . yk(t)
y′1(t) y′2(t) . . . y′k(t)

... . . .
...

y
(k−1)
1 (t) y

(k−1)
2 (t) . . . y

(k−1)
k (t)



c1
c2
...
ck

 =


0
0
...
0


We see that, if this matrix is invertible for

any t0, then there is only the trivial solu-
tion. Therefore, the determinant is a key
player, and the Wronskian is the determi-
nant of that matrix.
CONCLUSION: If there is a t0 in I so that
W (y1, . . . , yk)(t0) 6= 0, then the functions
are linearly independent.
CAUTION: It is possible for W (y1, y2) = 0
for all t, and still have linearly independent
functions. For example, look at t2|t| and t3

on the interval −1 < t < 1.
(c) In class, we proved that the dimension of the

nullspace of the linear operator L(y) was n
for an nth order linear differential equation.
In other words,

“There are exactly n linearly independent
functions to the nth order linear homoge-
neous differential equation”.

These n functions make up the fundamen-
tal set (they form a basis).

(d) Abel’s Theorem:
DISCUSSION: While the definition of linear
independence holds for any set of functions,
we are especially interested in functions that
are solutions to a linear homogeneous dif-
ferential equation. Abel’s Theorem provides
that connection.
THEOREM: If y1, y2 are solutions to y′′ +
p(t)y′ + q(t)y = 0 on the interval I, then
W (y1, y2) is either identically zero or never
zero on the interval I.

4 Models

We discussed many applications of differential equa-
tions, including population models, radioactive decay,
Newton’s Law of Cooling, Tank mixing problems and
Oscillators. Below is list of the things out of these
sections we want to be able to do:
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1. Know the basic radioactive decay model and its
solution.

2. Construct an autonomous differential equation to
model population growth in the standard model
and with an environmental equilibrium. Be able
to solve these models analytically (usually re-
quires partial fractions) and graphically.

3. Be able to construct the differential equation cor-
responding to the tank mixing problem. Be able
to solve it (it will be a linear first order equation)
and analyze it (using a phase diagram, if possi-
ble).

4. Given Newton’s Law of cooling model, be able to
find the coefficients in the model, solve it analyt-
ically, and analyze the behavior of the solutions
(also using a phase diagram).

5. Oscillators: (Sections 3.8 and 3.9)

(a) Know the mass-spring model (what do the
coefficients represent?)

(b) Be able to analyse the possible outcomes of
the phsyical problem (versus all mathemat-
ically possible outcomes).

(c) Understand why the phenomena of Beat-
ing and Resonance appear in solutions. For
what types of differential equations can we
expect these phenomena? Understand the
transition from Beating to Resonance.

(d) Solve and analyze the second order linear
differential equation, both forced and un-
forced, and discuss what the solution means
in the physical setting (mass-spring).

5 Miscellaneous Questions

1. Some conceptual questions:

(a) What is an nth order differential equation?
What’s the difference between a linear and
nonlinear differential equation?

(b) What does it mean for a function to be a
solution to a differential equation?

(c) What’s the difference between a differential
equation and an initial value problem?

(d) What do we use a direction field for, and
when do we use it?

(e) Does it make sense to draw a direction field
for a second order differential equation?

(f) What do we use a phase diagram for, and
when do we use it?

(g) What is the relationship between the phase
diagram and the direction field (for first or-
der equations).

(h) What is an autonomous differential equa-
tion?

(i) What’s a “transient” part of a solution?
What’s a “steady-state” part of a solution?
When can we expect to get them?

(j) What’s the difference between a “steady-
state” solution and an equilibrium solution?

(k) What’s the difference between linearly inde-
pendent functions and linearly independent
solutions to a linear differential equation?

(l) We said earlier that, under certain circum-
stances, solutions to a y′ = f(t, y) cannot
cross in the direction field. What are the
conditions?

(m) Note that y = 0 and y = cos(t) + sin(t) are
both solutions to y′′ + y = 0, which means
that there are an infinite number of cross-
ings between two solutions of the differen-
tial equation in the direction field. Does
this contradict the conclusions to the pre-
vious question?

(n) We know there are exactly two linearly in-
dependent solutions to ay′′ + by′ + cy = 0.
What were the initial value problems used
to prove this? Is this how we normally con-
struct the fundamental set?

(o) What was the ansatz we used to obtain the
characteristic equation?

(p) Using the two theorems we had about Ex-
istence and Uniqueness of linear differential
equations, state what should be the Exis-
tence and Uniqueness Theorem for: y′′′ +
p(t)y′′ + q(t)y′ + g(t)y = 0.

2. Suppose we wish to study the formation of rain-
drops in the atmosphere. We will take the sim-
plifying assumption that raindrops are approxi-
mately spherical, and our model says that the rate
of change of the raindrops’ volume is proportional
to its surface area.

We therefore have that:

v =
4
3
πr3 ⇒ r =

(
3v
4π

)1/3

, and SA = 4πr2

Then:

dv

dt
= 4πr2 = 4π

(
3v
4π

)2/3

= kv2/3

With the initial condition v(0) = 0, what does
the Existence and Uniqueness theorem say?
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Find at least two distinct solutions initial value
problem.

Show that:

y(t) =
{

(k3 t− c)
3, t > 3c

k
0, t ≤ 3c

k

is also a solution, for any positive value of c.
What physical implications does this have for the
“real world”?

3. An extra problem to analyze:

x′ = sin
(

1
x

)
with x(0) = C, where C is a small positive num-
ber.

(a) What type of differential equation is this?

(b) Between what two values does sin
(

1
x

)
oscil-

late?

(c) What are the roots of sin
(

1
x

)
? Try to get a

general expression for them.

(d) Describe in words what happens to the
sin
(

1
x

)
as x goes to zero. How about as x

goes to infinity?

(e) The x-intercepts of a curve in the phase di-
agram have special meaning. What is it?

(f) Sketch a graph of sin
(

1
x

)
(by hand, as best

you can).

(g) What, if anything, can you say about the
qualitative behavior of the solution satisfy-
ing the initial condition x(0) = C?

4. For the following differential equations, (i) Give
the general solution (all possible solutions), (ii)
Solve for the specific solution, if its an IVP, (iii)
State the interval for which the solution is valid.

(a) y′ = 2 cos(3x) y(0) = 2

(b) y′ − 0.5y = 0 y(0) = 200

(c) y′ − 0.5y = e2t y(0) = 1

(d) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0

(e) y′ = 1 + y2

(f) y′ = 1
2y(3− y)

(g) sin(2x)dx + cos(3y)dy = 0

(h) y′′ + 2y′ + y = 2e−t, y(0) = 0, y′(0) = 1

(i) y′ = xy2

(j) 2xy2 + 2y + (2x2y + 2x)y′ = 0

(k) 9y′′ − 12y′ + 4y = 0, y(0) = 0, y′(0) = −2

(l) y′′ + 4y = t2 + 3et, y(0) = 0, y′(0) = 1.

5. For more practice in using the Method of Unde-
termined Coefficients, look at problems 19-26, p.
171 (all solutions are in the back of the book).

6. Suppose y′ = −ky(y − 1), with k > 0. Sketch
the phase diagram. Find and classify the equi-
librium. Draw a sketch of y on the direction
field, paying particular attention to where y is
increasing/decreasing and concave up/down. Fi-
nally, get the analytic (general) solution.

7. Let my′′ + γy′ + ky = F cos(wt). What are the
conditions on m, γ, k to guarantee that the solu-
tions exhibit beating? resonance?

8. Let y′ = 2y2 + xy2, y(0) = 1. Solve, and find the
minimum of y. Hint: Determine the interval for
which the solution is valid.

9. Problem 15, p. 199 (Done as a group quiz)

10. Solve, and determine how the solution depends
on the initial condition, y(0) = y0: y′ = 2ty2

11. Problem 7, p. 190
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