Homework: Vector Norms

How to Measure Distances Between Things in \mathbb{R}^n

Definition: The norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is a function from \mathbb{R}^n to \mathbb{R} , denoted by $\|\cdot\|$, so that the following are properties are satisfied:

- 1. $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$.
- 2. $||c\mathbf{x}|| = |c|||\mathbf{x}||$, for all scalars c.
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (Triangle Inequality)

Definition: Given a vector space X and a norm $\|\cdot\|$, the distance between two vectors \mathbf{x}, \mathbf{y} is $\|\mathbf{x} - \mathbf{y}\|$.

Definition: The p-norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is

$$\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

In particular,

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$$
 $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

And, we will define the "infinity norm" as:

$$\|\mathbf{x}\|_{\infty} = \max_{i} \left\{ |x_i| \right\}$$

Exercise Set 1

- 1. Show that $\|\mathbf{x}\|_{\infty}$ satisfies the three parts in the definition of a norm.
- 2. What if two vectors were the same except for a single coordinate (without loss of generality, make it the first coordinate). What would the distance between them be under the 1-, 2- and ∞ norms?
- 3. If two vectors (in \mathbb{R}^n) are within ϵ of each other in the ∞ norm, how close together are they in the 1- norm? (Hint: Start with definitions)
- 4. If two vectors (in \mathbb{R}^n) were within ϵ of each other in the 1- norm, how close together are they in the ∞ norm?
- 5. Let $F(\mathbf{c}) = F(c_1, c_2, \dots, c_n) = c_1 a_1 + c_2 a_2 + \dots + c_n a_n$, where every $c_i \geq 0$, $\sum_i c_i = 1$, and a_1, a_2, \dots, a_n are given, fixed numbers. Find the maximum value of F, and the \mathbf{c} where it occurs. (If you get stuck, try putting in some numbers for the a_i and simplifying the problem- For example, find the max of $3c_1 + 5c_2$)
- 6. Same function as before, except that the values of c_i are changed: This time, the only restriction is $|c_i| = 1$ for each i.