Homework: Matrix Norms

How to Measure Distances Between Things in \mathbb{R}^n

Definition: Given a vector space V, and a norm $\|\cdot\|$, we can define the induced matrix norm for a matrix A as:

$$||A|| = \max_{\mathbf{x} \in \mathbb{R}^n} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||$$

For example, every p-norm for $V = \mathbb{R}^n$ induces a matrix norm. In our work below, we will show that we can compute the induced matrix norm directly for some values of p. For the 2-norm, we won't prove it, but if λ is the largest eigenvalue of A^TA , then $||A||_2 = \sqrt{\lambda}$.

We might also mention a matrix norm that is not an induced norm- It is the Frobenius norm:

$$||A||_{\text{fro}} = \left(\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}^{2}\right)^{2}$$

This is the norm you would get by treating the matrix A as one big vector, and using the 2-norm on that.

Exercise Set 2

You might find the solutions to Exercise Set 1 useful when you're solving these.

- 1. Show that $||A||_1 = \max$ abs col sum. HINT: Write $A\mathbf{x}$ in terms of the columns of A.
- 2. Show that $||A||_{\infty} = \max$ abs row sum. HINT: Write $A\mathbf{x}$ in terms of the rows of A.
- 3. Find a 2×2 matrix A so that det(A) = 0, but $||A||_p \neq 0$ for $p = 1, \infty$.
- 4. Show that for any induced matrix norm:
 - (a) $||A\mathbf{x}|| \le ||A||\mathbf{x}||$
 - (b) $||AB|| \le ||A|| ||B||$
 - (c) $||A + B|| \le ||A|| + ||B||$
- 5. Let λ_{\min} be the smallest eigenvalue of A^TA , and let $B = A^{-1}$. Show that the largest eigenvalue of B^TB is $1/\lambda_{\min}$
- 6. If we are solving $A\mathbf{x} = \mathbf{b}$, and \mathbf{x}_c is our approximate solution (with $\mathbf{r} = \mathbf{b} A\mathbf{x}_c$), show that the error magnification factor can be written as:

$$\frac{\|A^{-1}\mathbf{r}\|}{\|\mathbf{r}\|} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}$$