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Data structure issues (for example, those which arise when studying sparse matrix methods)
are standardized by reliance on appropriate commands. Matlab has facilities for audio and
image file input and output. Differential equations simulations are simple to realize, due
to the animation commands built into Matlab. These goals can all be achieved in other
ways. But it is helpful to have one package that will run on almost all operating systems and
simplify the details so that students can focus on the real mathematical issues. Appendix B
is a short Matlab tutorial that can be used as an introduction to students or as a reference
for those already familiar with the software.

The text comes with a CD that contains Matlab programs taken directly from the
text. The CD is available on dual platforms. These programs are also available on the Web
site www.aw-bc.com/sauer, where new material and updates will be posted for users to
download.

Unique to this text are solutions manuals for both instructors and students. The
Instructor’s Solutions Manual (ISBN: 0-321-28685-5) contains detailed solutions to the
odd-numbered exercises, and answers to the even-numbered exercises. To provide help for
students, the Student’s Solutions Manual (ISBN: 0-321-28686-3) contains worked-out
solutions to selected exercises. The manuals also show how to use Matlab software as an
aid to solving the types of problems that are presented in the exercises.

The Addison-Wesley Math Tutor Center is staffed by qualified mathematics and statis-
tics instructors who provide students with tutoring on examples and odd-numbered exercises
from the textbook. Tutoring is available via toll-free telephone, toll-free fax, e-mail, and
the Internet. Interactive, web-based technology allows tutors and students to view and work
through problems together in real time over the Internet. For more information, please visit
our Web site at www.aw-bc.com/tutorcenter or call us at 1-888-777-0463.

Numerical Analysis is structured to move from foundational, elementary ideas at the
outset to more sophisticated concepts later in the presentation. Chapter 0 provides funda-
mental building blocks for later use. Some instructors like to start at the beginning; others
(including the author) prefer to start at Chapter 1 and fold in topics from Chapter 0 when
required. Chapters 1 and 2 cover equation-solving in its various forms. Chapter 3 treats the
fitting of data by interpolation, and Chapter 4 introduces fitting by least-squares methods. In
the succeeding Chapters 5–8, we return to the classical numerical analysis areas of contin-
uous mathematics—numerical differentiation and integration, and the solution of ordinary
and partial differential equations with initial and boundary conditions.

Chapter 9 develops random numbers in order to provide complementary methods to
Chapters 5–8: the Monte-Carlo alternative to the standard numerical integration schemes,
and the counterpoint of stochastic differential equations, necessary when uncertainty is
present in the model.

Compression is a core topic of numerical analysis, even though it often hides in plain
sight in interpolation, least squares, and Fourier analysis. Modern compression techniques
are featured in Chapters 10 and 11. In the former, the Fast Fourier Transform is treated
as a device to carry out trigonometric interpolation, both in the exact and least squares
sense. Links to audio compression are emphasized and fully carried out in Chapter 11 on
the Discrete Cosine Transform and Huffman coding, the standard workhorse for modern
audio and image compression. Chapter 12 on eigenvalues and singular values is also written
to emphasize connections to data compression, which are growing in importance in con-
temporary applications. The final Chapter 13 provides a short introduction to optimization
techniques.

xii
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20 | CHAPTER 0 Fundamentals

3. Explain how to most accurately compute the two roots of the equation x2 + bx − 10−12 = 0,
where b is a number greater than 100.

4. Prove formula (0.14).

0.4 Computer Problems

1. Calculate the expressions that follow in double precision arithmetic (using Matlab, for
example) for x = 10−1, . . . ,10−14. Then, using an alternative form of the expression that
doesn’t suffer from subtracting nearly equal numbers, repeat the calculation and make a table
of results. Report the number of correct digits in the original expression for each x.

(a)
1 − secx

tan2 x
(b)

1 − (1 − x)3

x

2. Find the smallest value of p for which the expression calculated in double precision arithmetic
at x = 10−p has no correct significant digits. (Hint: First find the limit of the expression as
x → 0.)

(a)
tanx − x

x3
(b)

ex + cosx − sinx − 2

x3

3. Consider a right triangle whose legs are of length 3344556600 and 1.2222222. How much
longer is the hypotenuse than the longer leg? Give your answer with at least four correct
digits.

0.5 REVIEW OF CALCULUS

Some important basic facts from calculus will be necessary later. The Intermediate Value
Theorem and the Mean Value Theorem are important for solving equations in Chapter 1.
Taylor’s Theorem is important for understanding interpolation in Chapter 3 and becomes
of paramount importance for solving differential equations in Chapters 6, 7, and 8.

The graph of a continuous function has no gaps. For example, if the function is positive
for one x-value and negative for another, it must pass through zero somewhere. This fact is
basic for getting equation solvers to work in the next chapter. The first theorem formalizes
this notion.

THEOREM 0.4 (Intermediate Value Theorem) Let f be a continuous function on the interval [a,b]. Then
f realizes every value between f (a) and f (b). More precisely, if y is a number between
f (a) and f (b), then there exists a number c with a ≤ c ≤ b such that f (c) = y.

EXAMPLE 0.7 Show that f (x) = x2 − 3 on the interval [1,3] must take on the values 0 and 1.

Because f (1) = −2 and f (3) = 6, all values between −2 and 6, including 0 and 1,
must be taken on by f . For example, setting c = √

3, note that f (c) = f (
√

3) = 0, and
secondly, f (2) = 1.

▲
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1.2 Fixed-Point Iteration | 39

EXAMPLE 1.4 Use Fixed-Point Iteration to find a root of cosx = sinx.

The simplest way to convert the equation to a fixed point problem is to add x to each
side of the equation. We can rewrite the problem as

x + cosx − sinx = x

and define

g(x) = x + cosx − sinx. (1.12)

The result of applying the Fixed-Point Iteration method to this g(x) is shown in the
table.

i xi g(xi) ei = |xi − r| ei/ei−1

0 0.0000000 1.0000000 0.7853982
1 1.0000000 0.6988313 0.2146018 0.273
2 0.6988313 0.8211025 0.0865669 0.403
3 0.8211025 0.7706197 0.0357043 0.412
4 0.7706197 0.7915189 0.0147785 0.414
5 0.7915189 0.7828629 0.0061207 0.414
6 0.7828629 0.7864483 0.0025353 0.414
7 0.7864483 0.7849632 0.0010501 0.414
8 0.7849632 0.7855783 0.0004350 0.414
9 0.7855783 0.7853235 0.0001801 0.414

10 0.7853235 0.7854291 0.0000747 0.415
11 0.7854291 0.7853854 0.0000309 0.414
12 0.7853854 0.7854035 0.0000128 0.414
13 0.7854035 0.7853960 0.0000053 0.414
14 0.7853960 0.7853991 0.0000022 0.415
15 0.7853991 0.7853978 0.0000009 0.409
16 0.7853978 0.7853983 0.0000004 0.444
17 0.7853983 0.7853981 0.0000001 0.250
18 0.7853981 0.7853982 0.0000001 1.000
19 0.7853982 0.7853982 0.0000000

There are several interesting things to notice in the table. First, the iteration appears to
converge to 0.7853982. Since cosπ/4 = √

2/2 = sinπ/4, the true solution to the
equation cosx − sinx = 0 is r = π/4 ≈ 0.7853982. The fourth column is the “error
column.” It shows the absolute value of the difference between the best guess xi at step i

and the actual fixed point r . This difference becomes small near the bottom of the table,
indicating convergence toward a fixed point.

Notice the pattern in the error column. The errors seem to decrease by a constant
factor, each error being somewhat less than half the previous error. To be more precise, the
ratio between successive errors is shown in the final column. In most of the table, we are
seeing the ratio ei+1/ei of successive errors to approach a constant number, about 0.414.
In other words, we are seeing the linear convergence relation

ei ≈ 0.414ei−1. (1.13)
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44 | CHAPTER 1 Solving Equations

than x. Suggest a Fixed-Point Iteration on the basis of this fact, and use Theorem 1.6 to decide
whether it will converge to the cube root of A.

10. Improve the cube root algorithm of Exercise 9 by reweighting the average. Setting g(x) =
wx + (1 − w)A/x2 for some fixed number 0 < w < 1, what is the best choice for w?

11. Consider Fixed-Point Iteration applied to g(x) = 1 − 5x + 15
2 x2 − 5

2x3. (a) Show that
1 − √

3/5, 1, and 1 + √
3/5 are fixed points. (b) Show that none of the three fixed points are

locally convergent. (Computer Problem 7 investigates this example further.)

12. Show that the initial guesses 0,1, and 2 lead to a fixed point in Exercise 11. What happens to
other initial guesses close to those numbers?

13. Assume that g(x) is continuously differentiable and that the Fixed-Point Iteration g(x) has
exactly three fixed points, r1 < r2 < r3. Assume also that |g′(r1)| = 0.5 and |g′(r3)| = 0.5.
List all values of |g′(r2)| that are possible under these conditions.

14. Assume that g is a continuously differentiable function and that the Fixed-Point Iteration g(x)

has exactly three fixed points, −3,1,and 2. Assume that g′(−3) = 2.4 and that FPI started
sufficiently near the fixed point 2 converges to 2. Find g′(1).

15. ProvethevariantofTheorem1.6:Ifg iscontinuouslydifferentiableand |g′(x)| ≤ B < 1onan
interval [a,b]containingthefixedpointr , thenFPIconvergestor fromanyinitialguessin [a,b].

16. Prove that a continuously differentiable function g(x) satisfying |g′(x)| < 1 on a closed
interval cannot have two fixed points on that interval.

17. Consider Fixed-Point Iteration with g(x) = x − x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < x0 < 1, then x0 > x1 > x2 . . . > 0. (c) Show that FPI converges to
r = 0, while g′(0) = 1. (Hint: use the fact that every bounded monotonic sequence converges
to a limit.)

18. Consider Fixed-Point Iteration with g(x) = x + x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < x0 < 1, then x0 < x1 < x2 <.. . . (c) Show that FPI fails to
converge to a fixed point, while g′(0) = 1. Together with Exercise 17, this shows that FPI may
converge to a fixed point r or diverge from r when |g′(r)| = 1.

19. Consider the equation x3 + x − 2 = 0, with root r = 1. Add the term cx to both sides and
divide by c to obtain g(x). (a) For what c is FPI locally convergent to r = 1?(b) For what c

will FPI converge fastest?

20. Assume that Fixed-Point Iteration is applied to a twice continuously differentiable function
g(x) and that g′(r) = 0 for a fixed point r . Show that if FPI converges to r , then the error
obeys limi→∞(ei+1)/e

2
i = M , where M = |g′′(r)|/2.

21. Define Fixed-Point Iteration on the equation x2 + x = 5/16 by isolating the x term. Find both
fixed points, and determine which initial guesses lead to each fixed point under iteration. (Hint:
Plot g(x), and draw cobweb diagrams.)

22. Find the set of all initial guesses for which the Fixed-Point Iteration x → 4/9 − x2 converges
to a fixed point.
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Figure 1.9 Three steps of Newton’s
Method. Illustration of Example 1.11.
Starting with x0 = –0.7, the
Newton’s Method iterates are plotted
along with the tangent lines. The
method appears to be converging to
the root.

▲

1.4.1 Quadratic convergence of Newton’s Method

The convergence in Example 1.11 is qualitatively faster than the linear convergence we
have seen for the Bisection Method and Fixed-Point Iteration. A new definition is needed.

DEFINITION 1.10 Let ei denote the error after step i of an iterative method. The iteration is quadratically
convergent if

M = lim
i→∞

ei+1

e2
i

< ∞.

THEOREM 1.11 Let f be twice continuously differentiable and f (r) = 0. If f ′(r) �= 0, then Newton’s
Method is locally and quadratically convergent to r . The error ei at step i satisfies

lim
i→∞

ei+1

e2
i

= M,

where

M =
∣∣∣∣ f ′′(r)
2f ′(r)

∣∣∣∣ .

Proof. To prove local convergence, note that Newton’s Method is a particular form of
Fixed-Point Iteration, where

g(x) = x − f (x)

f ′(x)
,
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section ends with the description of Brent’s Method, a hybrid method which combines the
best features of iterative and bracketing methods.

1.5.1 Secant Method and variants

The Secant Method is similar to the Newton’s Method, but replaces the derivative by a
difference quotient. Geometrically, the tangent line is replaced with a line through the two
last known guesses. The intersection point of the “secant line” is the new guess.

An approximation for the derivative at the current guess xi is the difference quotient

f (xi) − f (xi−1)

xi − xi−1
.

A straight replacement of this approximation for f ′(xi) in Newton’s Method yields the
Secant Method.

Secant Method

x0,x1 = initial guesses

xi+1 = xi − f (xi)(xi − xi−1)

f (xi) − f (xi−1)
for i = 1,2,3, . . . .

Unlike Fixed-Point Iteration and Newton’s Method, two starting guesses are needed to
begin the Secant Method.

It can be shown that, under the assumption that the Secant Method converges to r and
f ′(r) �= 0, the approximate error relationship

ei+1 ≈
∣∣∣∣ f ′′(r)
2f ′(r)

∣∣∣∣eiei−1

holds and that this implies that

ei+1 ≈
∣∣∣∣ f ′′(r)
2f ′(r)

∣∣∣∣
α−1

eα
i ,

where α = (1 + √
5)/2 ≈ 1.62. (See Exercise 6.) The convergence of the Secant Method

to simple roots is called superlinear, meaning that it lies between linearly and quadratically
convergent methods.

EXAMPLE 1.16 Apply the Secant Method with starting guesses x0 = 0,x1 = 1 to find the root of
f (x) = x3 + x − 1.

The formula gives

xi+1 = xi − (x3
i + xi − 1)(xi − xi−1)

x3
i + xi − (x3

i−1 + xi−1)
. (1.34)

Starting with x0 = 0 and x1 = 1, we compute

x2 = 1 − (1)(1 − 0)

1 + 1 − 0
= 1

2

x3 = 1

2
− − 3

8 (1/2 − 1)

− 3
8 − 1

= 7

11
,
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6 0.682225 -0.000246683 interpolation
7 0.682328 -5.43508e-007 interpolation
8 0.682328 1.50102e-013 interpolation
9 0.682328 0 interpolation

Zero found in the interval: [0, 1].

ans=

0.68232780382802

Alternatively, the command

>> fzero(’xˆ3+x-1’,1)

looks for a root of f (x) near x = 1 by first locating a bracketing interval and then applying
Brent’s Method.

1.5 Exercises

1. Apply two steps of the Secant Method to the equation with initial guesses x0 = 1 and x1 = 2.
(a) x3 = 2x + 2 (b) ex + x = 7 (c) ex + sinx = 4

2. Apply two steps of the Method of False Position with initial bracket [1, 2] to the equations of
Exercise 1.

3. Apply two steps of Inverse Quadratic Interpolation to the equations of Exercise 1. Use initial
guesses x0 = 1,x1 = 2, and x2 = 0, and update by retaining the three most recent iterates.

4. A commercial fisher wants to set the net at a water depth where the temperature is 40 degrees F.
By dropping a line with a thermometer attached, she finds that the temperature is 38 degrees at
a depth of 12 meters, and 46 at a depth of 5 meters. Use the Secant Method to determine a best
estimate for the depth at which the temperature is 40.

5. Derive equation (1.36) by substituting y = 0 into (1.35).

6. If the Secant Method converges to r , f ′(r) �= 0, and f ′′(r) �= 0, then the approximate error
relationship ei+1 ≈ |f ′′(r)/(2f ′(r))|eiei−1 can be shown to hold. Prove that if in addition
limi→∞ ei+1/e

α
i exists and is nonzero for some α > 0, then α = (1 + √

5)/2 and
ei+1 ≈ |f ′′(r)/2f ′(r)|α−1eα

i .

1.5 Computer Problems

1. Use the Secant Method to find the (single) solution of each equation in Exercise 1.

2. Use the Method of False Position to find the solution of each equation in Exercise 1.

3. Use Inverse Quadratic Interpolation to find the solution of each equation in Exercise 1.

4. Set f (x) = 54x6 + 45x5 − 102x4 − 69x3 + 35x2 + 16x − 4. Plot the function on the
interval [−2,2], and use the Secant Method to find all five roots in the interval. To which of the
roots is the convergence linear, and to which is it superlinear?
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is ||A|| = 2.0001, according to (2.20). The inverse of A is

A−1 =
[−10000 10000

10001 −10000

]
,

which has norm ||A−1|| = 20001. The condition number of A is

cond(A) = (2.0001)(20001) = 40004.0001.

This is exactly the error magnification we found in Example 2.11, which evidently achieves
the worst case, defining the condition number. The error magnification factor for any other b

in this system will be less than or equal to 40004.0001. Exercise 3 asks for the computation
of some of the other error magnification factors.

The significance of the condition number is the same as in Chapter 1. Error magnifica-
tion factors of the magnitude cond(A) are possible. In floating point arithmetic, the relative
backward error cannot be expected to be less than εmach, since storing the entries of b already
causes errors of that size.According to (2.19), relative forward errors of size εmach · cond(A)

are possible in solving Ax = b. In other words, if cond(A) ≈ 10k , we should prepare to
lose k digits of accuracy in computing x.

In Example 2.11, cond(A) ≈ 4 × 104, so in double precision we should expect about
16 − 4 = 12 correct digits in the solution x. We can test this by introducing Matlab’s best
general-purpose linear equation solver: \.

In Matlab, the backslash command x = A\b solves the linear system by using an
advanced version of the LU factorization that we will explore in Section 2.4. For now, we
will use it as an example of what we can expect from the best possible algorithm operating in
floating point arithmetic. The following Matlab commands deliver the computer solution
xc of Example 2.11:

>> A = [1 1;1.0001 1]; b=[2;2.0001];
>> xc = A\b
xc =

1.00000000000222
0.99999999999778

Compared with the correct solution x = [1,1], the computed solution has about 11 correct
digits, close to the prediction from the condition number.

The Hilbert matrix H , with entries Hij = 1/(i + j − 1), is notorious for its large
condition number.

EXAMPLE 2.12 Let H denote the n × n Hilbert matrix. Use Matlab’s \ to compute the solution of
Hx = b, where b = H · [1, . . . ,1]T , for n = 6 and 10.

The right-hand side b is chosen to make the correct solution the vector of n ones, for
ease of checking the forward error. Matlab finds the condition number (in the infinity
norm) and computes the solution:

>> n=6;H=hilb(n);
>> cond(H,inf)
ans =

2.907027900294064e+007
>> b=H*ones(n,1);
>> xc=H\b
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EXAMPLE 3.9 Interpolate f (x) = 1/(1 + 12x2) at evenly-spaced points in [−1,1].
This is called the Runge example. The function has the same general shape as the

triangular bump in Figure 3.5. Figure 3.6 shows the result of the interpolation, behavior
that is characteristic of the Runge phenomenon: polynomial wiggle near the ends of the
interpolation interval.

▲

(a) (b)

Figure 3.6 Runge example. Polynomial interpolation of the Runge function of
Example 3.9 at evenly spaced base points causes extreme variation near the ends
of the interval, similar to Figure 3.5. (a) 15 base points (b) 25 base points.

As we have seen, examples with the Runge phenomenon characteristically have large
error near the outside of the interval of data points. The cure for this problem is intuitive:
Move some of the interpolation points toward the outside of the interval, where the function
producing the data can be better fit. We will see how to accomplish this in the next section
on Chebyshev interpolation.

3.2 Exercises

1. (a) Find the degree 2 interpolating polynomial P2(x) through the points (0,0), (π/2,1), and
(π,0). (b) Calculate P2(π/4), an approximation for sin(π/4). (c) Use Theorem 3.3 to give an
error bound for the approximation in part (b). (d) Using a calculator or Matlab, compare the
actual error to your error bound.

2. (a) Given the data points (1,0), (2, ln 2), (4, ln 4), find the degree 2 interpolating polynomial.
(b) Use the result of (a) to approximate ln 3. (c) Use Theorem 3.3 to give an error bound for the
approximation in part (b). (d) Compare the actual error to your error bound.

3. Assume that the polynomial P9(x) interpolates the function f (x) = e−2x at the 10
evenly-spaced points x = 0,1/9,2/9,3/9, . . . ,8/9,1. (a) Find an upper bound for the error
|f (1/2) − P9(1/2)|. (b) How many decimal places can you guarantee to be correct if P9(1/2)

is used to approximate e−1?

4. Consider the interpolating polynomial for f (x) = 1/(x + 5) with interpolation nodes
x = 0,2,4,6,8,10. Find an upper bound for the interpolation error at (a) x = 1 and (b) x = 5.
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Gauss-Newton Method

To minimize

r1(x)2 + ·· · + rm(x)2.

Set x0 = initial vector,
for k = 0,1,2, . . .

Dr(xk)T Dr(xk)vk = −Dr(xk)T r(xk)

xk+1 = xk + vk (4.31)

end

Notice that each step of the Gauss-Newton Method is reminiscent of the normal equa-
tions, where the coefficient matrix has been replaced by Dr . The Gauss-Newton Method
solves for a root of the gradient of the squared error. Although the gradient must be zero
at the minimum, the converse is not true, so it is possible for the method to converge to a
maximum or a neutral point. Caution must be used in interpreting the algorithm’s result.

Two intersecting circles intersect in one or two points, unless the circles coincide. Three
circles in the plane, however, typically have no points of common intersection. In such a
case, we can ask for the point in the plane that comes closest to being an intersection point
in the sense of least squares.

EXAMPLE 4.19 Consider the three circles in the plane with centers (x1,y1) = (−1,0), (x2,y2) = (1,1/2),
(x3,y3) = (1,−1/2) and radii R1 = 1,R2 = 1/2,R3 = 1/2, respectively. Use the
Gauss-Newton Method to find the point for which the sum of the squared distances to the
three circles is minimized.

The circles are shown in Figure 4.11(a). The point (x,y) in question minimizes the
sum of the squares of the residual errors:

r1(x,y) =
√

(x − x1)2 + (y − y1)2 − R1

r2(x,y) =
√

(x − x2)2 + (y − y2)2 − R2

r3(x,y) =
√

(x − x3)2 + (y − y3)2 − R3.

This follows from the fact that the distance from a point (x,y) to a circle with center
(x1,y1) and radius R1 is |√(x − x1)2 + (y − y1)2 − R1| (see Exercise 3). The Jacobian
of r(x,y) is

Dr(x,y) =




x−x1
S1

y−y1
S1

x−x2
S2

y−y2
S2

x−x3
S3

y−y3
S3


 ,

where Si = √
(x − xi)2 + (y − yi)2 for i = 1,2,3. The Gauss-Newton iteration with

initial vector (x0,y0) = (0,0) converges to (x,y) = (0.412891,0) within six correct
decimal places after seven steps.
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13. Develop a first-order method for approximating f ′′(x) that uses the data f (x − h),f (x), and
f (x + 3h) only. Find the error term.

14. (a) Apply extrapolation to the formula developed in Exercise 13 to get a second-order formula
for f ′′(x). (b) Demonstrate the order of the new formula by approximating f ′′(0), where
f (x) = cosx, with h = 0.1 and h = 0.01.

15. Develop a second-order method for approximating f ′(x) that uses the data f (x − 2h),f (x),
and f (x + 3h) only. Find the error term.

16. Find E(h), an upper bound for the error of the machine approximation of the two-point
forward-difference formula for the first derivative. Follow the reasoning preceding (5.11). Find
the h corresponding to the minimum of E(h).

17. Prove the second-order formula for the third derivative

f ′′′(x) = −f (x − 2h) + 2f (x − h) − 2f (x + h) + f (x + 2h)

2h3
+ O(h2).

18. Prove the second-order formula for the third derivative

f ′′′(x) = f (x − 3h) − 6f (x − 2h) + 12f (x − h) − 10f (x) + 3f (x + h)

2h3
+ O(h2).

19. Prove the second-order formula for the fourth derivative

f (iv)(x) = f (x − 2h) − 4f (x − h) + 6f (x) − 4f (x + h) + f (x + 2h)

h4
+ O(h2).

This formula is used in Reality Check 2.

20. This exercise justifies the beam equations (2.42) and (2.43) in Reality Check 2. Let f (x) be a
five-times continuously differentiable function.

(a) Prove that if f (x) = f ′(x) = 0, then

f (iv)(x) = 12f (x + h) − 6f (x + 2h) + 4
3f (x + 3h)

h4
− 6

5
f (v)(c)h.

(b) Prove that if f ′′(x) = f ′′′(x) = 0, then

f (iv)(x) = 12f (x − 3h) − 24f (x − 2h) + 12f (x − h)

25h4
+ 18

25
f (v)(c)h.

(c) Prove that if f ′′(x) = f ′′′(x) = 0, then

f (iv)(x) = 25f (x − 4h) − 93f (x − 3h) + 111f (x − 2h) − 43f (x − h)

25h4
+ 217

100
f (v)(c)h.

21. Use Taylor expansions to prove that (5.16) is a fourth-order formula.
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22. The error term in the two-point forward-difference formula for f ′(x) can be written in other
ways. Prove the alternative result

f ′(x) = f (x + h) − f (x)

h
− h

2
f ′′(x) − h2

6
f ′′′(c),

where c is between x and x + h. We will use this error form in the derivation of the
Crank-Nicolson Method in Chapter 8.

23. Investigate the reason for the name extrapolation. Assume that F(h) is an nth order formula for
approximating a quantity Q, and consider the points (Khn,F (h)) and (K(h/2)n,F (h/2)) in
the xy-plane, where error is plotted on the x-axis and the formula output on the y-axis. Find
the line through the two points (the best functional approximation for the relationship between
error and F ). The y-intercept of this line is the value of the formula when you extrapolate the
error to zero. Show that this extrapolated value is given by formula (5.15).

5.1 Computer Problems

1. Make a table of the error of the three-point centered-difference formula for f ′(0), where
f (x) = sinx − cosx, with h = 10−1, . . . ,10−12, as in the table in Section 5.1.2. Draw a plot
of the results. Does the minimum error correspond to the theoretical expectation?

2. Make a table and plot of the error of the three-point centered-difference formula for f ′(1), as
in Computer Problem 1, where f (x) = x−1.

3. Make a table and plot of the error of the two-point forward-difference formula for f ′(0), as in
Computer Problem 1, where f (x) = sinx − cosx. Compare your answers with the theory
developed in Exercise 16.

4. Make a table and plot as in Problem 3, but approximate f ′(1), where f (x) = x−1. Compare
your answers with the theory developed in Exercise 16.

5. Make a plot as in Problem 1 to approximate f ′′(0) for f (x) = cosx, using the 3-point centered
difference formula. Where does the minimum error appear to occur, in terms of machine
epsilon?

5.2 NEWTON-COTES FORMULAS FOR NUMERICAL INTEGRATION

The numerical calculation of definite integrals relies on many of the same tools we have
already seen. In Chapters 3 and 4, methods were developed for finding function approxima-
tion to a set of data points, using interpolation and least squares modeling. We will discuss
methods for numerical integration, or quadrature, based on both of these ideas.

For example, given a function f defined on an interval [a,b], we can draw an inter-
polating polynomial through some of the points of f (x). Since it is simple to evaluate the
definite integral of a polynomial, this calculation can be used to approximate the integral
of f (x). This is the Newton-Cotes approach to approximating integrals. Alternatively, we
could find a low-degree polynomial that approximates the function well in the sense of least
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6.2 Exercises

1. Using initial condition y(0) = 1 and step size h = 1/4, calculate the Trapezoid Method
approximation w0, . . . ,w4 on the interval [0,1]. Find the error at t = 1 by comparing with the
correct solution found in Exercise 6.1.3.

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

2. Using initial condition y(0) = 0 and step size h = 1/4, calculate the Trapezoid Method
approximation on the interval [0,1]. Find the error at t = 1 by comparing with the correct
solution found in Exercise 6.1.4.

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

3. Find the formula for the second-order Taylor Method for the following differential equations:
(a) y′ = ty (b) y′ = ty2 + y3 (c) y′ = y siny (d) y′ = eyt2

4. Apply the second-order Taylor Method to the initial value problems in Exercise 1. Using step
size h = 1/4, calculate the second-order Taylor Method approximation on the interval [0,1].
Compare with the correct solution found in Exercise 6.1.3, and find the error at t = 1.

5. (a) Prove (6.22). (b) Prove (6.23).

6.2 Computer Problems

1. Apply the explicit Trapezoid Method on a grid of step size h = 0.1 in [0,1] to the initial value
problems in Exercise 1. Print a table of the t values, approximations, and global truncation
error at each step.

2. Plot the approximate solutions for the IVPs in Exercise 1 on [0,1] for step sizes h = 0.1,0.05,
and 0.025, along with the true solution.

3. For the IVPs in Exercise 1, plot the global truncation error of the explicit Trapezoid Method at
t = 1 as a function of h = 0.1 × 2−k for 0 ≤ k ≤ 5. Use a loglog plot as in Figure 6.4.

4. For the IVPs in Exercise 1, plot the global truncation error of the second-order Taylor Method
at t = 1 as a function of h = 0.1 × 2−k for 0 ≤ k ≤ 5.

6.3 SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Approximation of systems of differential equations can be done as a simple extension of
the methodology for a single differential equation. Treating systems of equations greatly
extends our ability to model interesting dynamical behavior.

The ability to solve systems of ordinary differential equations lies at the core of the
art and science of computer simulation. In this section, we introduce two physical systems



�

�

�

�

�

�

�

�

6.4 Runge-Kutta Methods and Applications | 319

6. Adapt pend.m to build a damped pendulum with oscillating pivot. The goal is to investigate
the phenomenon of parametric resonance, by which the inverted pendulum becomes stable!
The equation is

y′′ + dy′ +
(g

l
+ Acos2πt

)
siny = 0,

where A is the forcing strength. Set d = 0.1 and the length of the pendulum to be 2.5 meters. In
the absence of forcing A = 0, the downward pendulum y = 0 is a stable equilibrium, and the
inverted pendulum y = π is an unstable equilibrium. Find as accurately as possible the range of
parameter A for which the inverted pendulum becomes stable. (Of course, A = 0 is too small;
it turns out that A = 30 is too large.) Use the initial condition y = 3.1 for your test, and call the
inverted position “stable” if the pendulum does not pass through the downward position.

7. Use the parameter settings of Computer Problem 6 to demonstrate the other effect of
parametric resonance: The stable equilibrium can become unstable with an oscillating pivot.
Find the smallest (positive) value of the forcing strength A for which this happens. Classify the
downward position as unstable if the pendulum eventually travels to the inverted position.

8. Adapt pend.m to build the double pendulum. A new pair of rod and bob must be defined for
the second pendulum. Note that the pivot end of the second rod is equal to the formerly free
end of the first rod: The (x,y) position of the free end of the second rod can be calculated by
using simple trigonometry.

9. Adapt orbit.m to solve the two-body problem. Set the masses to m2 = 0.3, m1 = 0.03, and
plot the trajectories with initial conditions (x1,y1) = (2,2), (x′

1,y
′
1) = (0.2,−0.2) and

(x2,y2) = (0,0), (x′
2,y

′
2) = (−0.01,0.01).

10. Adapt orbit.m to solve the three-body problem. Set the masses to m2 = 0.3,
m1 = m3 = 0.03. (a) Plot the trajectories with initial conditions (x1,y1) = (2,2),
(x′

1,y
′
1) = (0.2,−0.2), (x2,y2) = (0,0), (x′

2,y
′
2) = (0,0) and (x3,y3) = (−2,−2),

(x′
3,y

′
3) = (−0.2,0.2). (b) Change the initial condition of x′

1 to 0.20001, and compare the
resulting trajectories. This is a striking visual example of sensitive dependence.

6.4 RUNGE-KUTTA METHODS AND APPLICATIONS

The Runge-Kutta Methods are a family of ODE solvers that include the Euler and Trapezoid
Methods, and also more sophisticated methods of higher order. In this section, we intro-
duce a variety of one-step methods and apply them to simulate trajectories of some key
applications.

6.4.1 The Runge-Kutta family

We have seen that the Euler Method has order one and the Trapezoid Method has order
two. In addition to the Trapezoid Method, there are other second-order methods of the
Runge-Kutta type. One important example is the Midpoint Method.
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wi Euler wi

Trapezoid wi + 1

ti

SL

SR
(SL + SR)/2

ti + 1
t

(a)

wi

Midpoint wi + 1

ti

SL

SM

SM

ti + 1ti + h/2
t

(b)

Figure 6.14 Schematic view of two members of the RK2 family. (a) The Trapezoid
Method uses an average from the left and right endpoints to traverse the interval.
(b) The Midpoint Method uses a slope from the interval midpoint.

Midpoint Method

w0 = y0

wi+1 = wi + hf

(
ti + h

2
,wi + h

2
f (ti ,wi)

)
. (6.46)

To verify the order of the Midpoint Method, we must compute its local truncation error.
When we did this for the Trapezoid Method, we found the expression (6.31) useful:

yi+1 = yi + hf (ti ,yi) + h2

2

(
∂f

∂t
(ti ,yi) + ∂f

∂y
(ti ,yi)f (ti ,yi)

)
+ h3

6
y′′′(c). (6.47)

To compute the local truncation error at step i, we assume that wi = yi and calculate
yi+1 − wi+1. Repeating the use of the Taylor series expansion as for the Trapezoid Method,
we can write

wi+1 = yi + hf

(
ti + h

2
,yi + h

2
f (ti ,yi)

)

= yi + h

(
f (ti ,yi) + h

2

∂f

∂t
(ti ,yi) + h

2
f (ti ,yi)

∂f

∂y
(ti ,yi) + O(h2)

)
. (6.48)

Comparing (6.47) and (6.48) yields

yi+1 − wi+1 = O(h3),

so the Midpoint Method is of order two by Theorem 6.4.
Each function evaluation of the right-hand side of the differential equation is called a

stage of the method. The Trapezoid and Midpoint Methods are members of the family of
two-stage, second-order Runge-Kutta Methods, having form

wi+1 = wi + h

(
1 − 1

2α

)
f (ti ,wi) + h

2α
f (ti + αh,wi + αhf (ti ,wi)) (6.49)

for some α �= 0. Setting α = 1 corresponds to the explicit Trapezoid Method, and α = 1/2
to the Midpoint Method. Exercise 5 asks you to verify the order of methods in this family.
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the parameters is s = 10, r = 28, and b = 8/3. These settings were used for the trajectory
shown in Figure 6.17, computed by order four Runge-Kutta, using the following code to
describe the differential equation.

function z=ydot(t,y)
%Lorenz equations
s=10; r=28; b=8/3;
z(1)=-s*y(1)+s*y(2);
z(2)=-y(1)*y(3)+r*y(1)-y(2);
z(3)=y(1)*y(2)-b*y(3);

0 25
0

25

50

Figure 6.17 One trajectory of the
Lorenz equations (6.53), projected
to the xz-plane. Parameters are set to
s = 10, r = 28, and b = 8/3.

The Lorenz equations are an important example because the trajectories show great
complexity, despite the fact that the equations are deterministic and fairly simple (almost
linear). The explanation for the complexity is similar to that of the double pendulum or
three-body problem: sensitive dependence on initial conditions. Computer Problems 8 and 9
explore the sensitive dependence of this so-called chaotic attractor.

6.4 Exercises

1. Apply the Midpoint Method for the IVPs

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

with initial condition y(0) = 1. Using step size h = 1/4, calculate the Midpoint Method
approximation on the interval [0,1]. Compare with the correct solution found in
Exercise 6.1.3, and find the global truncation error at t = 1.
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multistep methods can achieve the same order with less computational effort—usually just
one function evaluation per step.

Since multistep methods use more than one previous w value, they need help getting
started. The start-up phase for an s-step method typically consists of a one-step method
that uses w0 to produce s − 1 values w1,w2, . . . ,ws−1, before the multistep method can be
used. The Adams-Bashforth Two-Step Method (6.72) needs w1, along with the given initial
condition w0, in order to begin. The following Matlab code uses the Trapezoid Method
to provide the start-up value w1. The command plot(t,y) is used to plot the output.

% Program 6.7 Multistep method
% Inputs: [inter(1),inter(2)] time interval,
% ic=[y0] initial condition,
% h=stepsize, s=number of (multi)steps, e.g. 2 for 2-step method
% Output:time steps t, solution y
% Calls a multistep method such as ab2step.m
% Example usage: exmultistep ([0,1],1,0.05,2)
function [t,y]=exmultistep(inter,ic,h,s)
n=round((inter(2)-inter(1))/h);
% Start-up phase
y(1,:)=ic;t(1)=int(1);
for i=1:s-1 % start-up phase, using one-step method
t(i+1)=t(i)+h;
y(i+1,:)=trapstep(t(i),y(i,:),h);
f(i,:)=ydot(t(i),y(i,:));

end
for i=s:n % multistep method loop
t(i+1)=t(i)+h;
f(i,:)=ydot(t(i),y(i,:));
y(i+1,:)=ab2step(t(i),i,y,f,h);

end
function y=trapstep(t,x,h)
%one step of the Trapezoid Method from section 6.2
z1=ydot(t,x);
g=x+h*z1;
z2=ydot(t+h,g);
y=x+h*(z1+z2)/2;

function z=ab2step(t,i,y,f,h)
%one step of the Adams-Bashforth 2-step method
z=y(i,:)+h*(3*f(i,:)/2-f(i-1,:)/2);

function z=unstable2step(t,i,y,f,h)
%one step of an unstable 2-step method
z=-y(i,:)+2*y(i-1,:)+h*(5*f(i,:)/2+f(i-1,:)/2);

function z=weaklystable2step(t,i,y,f,h)
%one step of a weakly-stable 2-step method
z=y(i-1,:)+h*2*f(i,:);

function z=ydot(t,y) % IVP from section 6.1
z=t*y+tˆ3;
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Adams-Moulton Four-Step Method (fifth-order)

wi+1 = wi + h

720
[251fi+1 + 646fi − 264fi−1 + 106fi−2 − 19fi−3]. (6.96)

These methods are heavily used in predictor–corrector methods, along with an Adams-
Bashforth predictor of the same order. Computer Problems 5 and 6 ask for Matlab code
to implement this idea.

6.7 Exercises

1. Apply the Adams-Bashforth Two-Step Method to the IVPs

(a) y′ = t (b) y′ = t2y (c) y′ = 2(t + 1)y

(d) y′ = 5t4y (e) y′ = 1/y2 (f ) y′ = t3/y2

with initial condition y(0) = 1. Use step size h = 1/4 on the interval [0,1]. Use the Explicit
Trapezoid Method to create w1. Using the correct solution in Exercise 6.1.3, find the global
truncation error at t = 1.

2. Carry out the steps of Exercise 1 on the IVPs

(a) y′ = t + y (b) y′ = t − y (c) y′ = 4t − 2y

with initial condition y(0) = 0. Use the correct solution from Exercise 6.1.4 to find the global
truncation error at t = 1.

3. Find a two-step, third-order explicit method. Is the method stable?

4. Find a second-order, two-step explicit method whose characteristic polynomial has a double
root at 1.

5. Show that the Implicit Trapezoid Method (6.89) is a second-order method.

6. Explain why the characteristic polynomial of an explicit or implicit s-step method, for s ≥ 2,
must have a root at 1 if its order is at least one.

7. (a) For which a1 does there exist a strongly stable second-order, two-step explicit method?
(b) Answer the same question for weakly stable such method.

8. Show that the coefficients of the Adams-Moulton Two-Step Implicit Method satisfy (6.92) and
that the method is strongly stable.

9. Find the order and stability type for the following two-step implicit methods:

(a) wi+1 = 3wi − 2wi−1 + h
12 [13fi+1 − 20fi − 5fi−1]

(b) wi+1 = 4
3wi − 1

3wi−1 + 2
3hfi+1

(c) wi+1 = 4
3wi − 1

3wi−1 + h
9 [4fi+1 + 4fi − 2fi−1]

(d) wi+1 = 3wi − 2wi−1 + h
12 [7fi+1 − 8fi − 11fi−1]

(e) wi+1 = 2wi − wi−1 + h
2 [fi+1 − fi−1]
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1

1

2

3

(a)

y

t

ya s0

s1

yb

1

1

2

3

(b)

y

t

s*ya

yb

Figure 7.3 The Shooting Method. (a) To solve the BVP, the IVP with
initial conditions y(a)= ya,y′(a)= s0 is solved with initial guess s0. The
value of F(s0) is y(b)– yb. Then a new s1 is chosen, and the process is
repeated with the goal of solving F(s)= 0 for s. (b) MATLAB’s ode45 is
used with root s∗ to plot the solution of the BVP (7.7).

the solution can be found (by an IVP solver as in Chapter 6, for example) as the solution to
the initial value problem 


y′′ = f (t,y,y′)
y(a) = ya

y′(a) = s∗
. (7.6)

We show a Matlab implementation of the shooting method in the next example.

EXAMPLE 7.6 Apply the shooting method to the boundary value problem


y′′ = 4y

y(0) = 1.

y(1) = 3
(7.7)

Write the differential equation as a first-order system in order to use Matlab’s
ode45 IVP solver:

y′ = v

v′ = 4y. (7.8)

Write a function file de.m as input to ode45:

function ydot=de(t,y)
ydot=[0;0];
ydot(1)=y(2);
ydot(2)=4*y(1);

Write a function file F.m as input to bisect.m from Chapter 1:

function z=F(s)
a=0; b=1; yb=3;
[t,y]=ode45(’de’,[a,b],[0,s])
z=y(end,1)-yb; % end means last entry of solution y
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1

y

t...t1t0

�0 �1 �2 �n—1 �n+1�n

t2 t3 tn—1 tn tn+1

Figure 7.10 Piecewise-linear B-splines
used as finite elements. Each φi(t), for
1 ≤ i ≤ n, has support on the interval from
ti – 1 to ti + 1.

For a set of data points (ti ,ci), define the piecewise-linear B-spline

S(t) =
n+1∑
i=0

ciφi(t).

It follows immediately from (7.22) that S(tj ) =∑n+1
i=0 ciφi(tj ) = cj . Therefore, S(t) is

a piecewise-linear function that interpolates the data points (ti ,ci). In other words, the
y-coordinates are the coefficients! This will simplify the interpretation of the solution (7.21).
The ci are not only the coefficients, but also the solution values at the grid points ti .

EXAMPLE 7.12 Apply the Finite Element Method to the BVP




y′′ = 4y

y(0) = 1.

y(1) = 3

SPOTLIGHT ON Orthogonality

We saw in Chapter 4 that the distance from a point to a plane is minimized by drawing

the perpendicular segment from the point to the plane. The plane represents candidates

to approximate the point; the distance between them is approximation error. This

simple fact about orthogonality permeates numerical analysis. It is the core of least

squares approximation and is fundamental to the Galerkin approach to boundary value

problems and partial differential equations, as well as Gaussian quadrature

(Chapter 5), compression (see Chapters 10 and 11), and the solutions of eigenvalue

problems (Chapter 12).
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Let φ0, . . . ,φn+1 be piecewise-linear B-splines on a grid on [a,b], as shown in
Figure 7.10. They will serve as the basis functions for the Galerkin method.

The first and last of the ci are found from collocation:

1 = y(0) =
n+1∑
i=0

ciφi(0) = c0φ0(0) = c0

3 = y(1) =
n+1∑
i=0

ciφi(1) = cn+1φn+1(1) = cn+1.

For i = 1, . . . ,n, use the finite element equations (7.20):

∫ 1

0
f (t,y,y′)φi(t) dt +

∫ 1

0
y′(t)φ′

i (t) dt = 0.

Note that the boundary terms of (7.20) are zero for i = 1, . . . ,n.
Now substitute the functional form y(t) =∑

ciφi(t) and use the differential equation
f (t,y,y′) = 4y to get

0 =
∫ 1

0


4φi(t)

n+1∑
j=0

cjφj (t) +
n+1∑
j=0

cjφ
′
j (t)φ

′
i (t)


 dt

=
n+1∑
j=0

cj

[
4
∫ 1

0
φi(t)φj (t) dt +

∫ 1

0
φ′

j (t)φ
′
i (t) dt

]
.

Assume that the grid is evenly-spaced with step size h. We will need the following
integrals, for i = 1, . . . ,n:

∫ b

a

φi(t)φi+1(t) dt =
∫ h

0

t

h

(
1 − t

h

)
dt =

∫ h

0

(
t

h
− t2

h2

)
dt

= t2

2h
− t3

3h2

∣∣∣∣
h

0
= h

6
(7.23)

∫ b

a

(φi(t))
2 dt = 2

∫ h

0

(
t

h

)2

dt = 2

3
h (7.24)

∫ b

a

φ′
i (t)φ

′
i+1(t) dt =

∫ h

0

1

h

(
− 1

h

)
dt = − 1

h
(7.25)

∫ b

a

(φ′
i (t))

2 dt = 2
∫ h

0

(
1

h

)2

dt = 2

h
. (7.26)
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8.2 Exercises

1. Prove that the functions (a) u(x, t) = sinπx cos4πt , (b) u(x, t) = e−x−2t , (c) u(x, t) =
ln(1 + x + t) are solutions of the wave equation with the specified initial-boundary conditions:

(a)




utt = 16uxx

u(x,0) = sinπx for 0 ≤ x ≤ 1
ut (x,0) = 0 for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)




utt = 4uxx

u(x,0) = e−x for 0 ≤ x ≤ 1
ut (x,0) = −2e−x for 0 ≤ x ≤ 1
u(0, t) = e−2t for 0 ≤ t ≤ 1
u(1, t) = e−1−2t for 0 ≤ t ≤ 1

(c)




utt = uxx

u(x,0) = ln(1 + x) for 0 ≤ x ≤ 1
ut (x,0) = 1/(1 + x) for 0 ≤ x ≤ 1
u(0, t) = ln(1 + t) for 0 ≤ t ≤ 1
u(1, t) = ln(2 + t) for 0 ≤ t ≤ 1

2. Prove that the functions (a) u(x, t) = sinπx sin 2πt , (b) u(x, t) = (x + 2t)5, (c) u(x, t) =
sinhx cosh 2t are solutions of the wave equation with the specified initial-boundary conditions:

(a)




utt = 4uxx

u(x,0) = 0 for 0 ≤ x ≤ 1
ut (x,0) = 2π sinπx for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 0 for 0 ≤ t ≤ 1

(b)




utt = 4uxx

u(x,0) = x5 for 0 ≤ x ≤ 1
ut (x,0) = 10x4 for 0 ≤ x ≤ 1
u(0, t) = 32t5 for 0 ≤ t ≤ 1
u(1, t) = (1 + 2t)5 for 0 ≤ t ≤ 1

(c)




utt = 4uxx

u(x,0) = sinhx for 0 ≤ x ≤ 1
ut (x,0) = 0 for 0 ≤ x ≤ 1
u(0, t) = 0 for 0 ≤ t ≤ 1
u(1, t) = 1

2 (e − 1
e
)cosh 2t for 0 ≤ t ≤ 1

3. Prove that u1(x, t) = sinαx coscαt and u2(x, t) = ex +ct are solutions of the wave
equation (8.25).

4. Prove that if s(x) is twice differentiable, then u(x, t) = s(αx + cαt) is a solution of the wave
equation (8.25).

5. Prove that the eigenvalues of A in (8.30) lie between 2 − 4σ 2 and 2.

6. Let λ be a complex number. (a) Prove that if λ + 1/λ is a real number, then |λ| = 1 or λ is real.
(b) Prove that if λ is real and |λ + 1/λ| ≤ 2, then |λ| = 1.

8.2 Computer Problems

1. Solve the initial-boundary value problems in Exercise 1 on 0 ≤ x ≤ 1,0 ≤ t ≤ 1 by the Finite
Difference Method with h = 0.05,k = h/c. Use Matlab’s mesh command to plot the
solution.
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Figure 9.2 Monte Carlo calculation
of area. From 10,000 random pairs in
[ 0, 1] × [ 0, 1], the ones that satisfy the
inequality in Example 9.2 are plotted. The
proportion of plotted random pairs is an
approximation to the area.

The random seed x0 �= 0 is chosen arbitrarily. The nonprime modulus was originally
selected to make the modulus operation as fast as possible, and the multiplier was selected
primarily because its binary representation was simple. The serious problem with this gener-
ator is that it flagrantly disobeys the independence postulate for random numbers. Notice that

a2 − 6a = (216 + 3)2 − 6(216 + 3)

= 232 + 6 · 216 + 9 − 6 · 216 − 18

= 232 − 9.

Therefore, a2 − 6a + 9 = 0 (mod m), so

xi+2 − 6xi+1 + 9xi = a2xi − 6axi + 9xi (mod m)

= 0 (mod m).

Dividing by m yields

ui+2 = 6ui+1 − 9ui (mod 1). (9.5)

The problem is not that ui+2 is predictable from the two previous numbers generated. Of
course, it will be predictable even from one previous number, because the generator is
deterministic. The problem lies with the small coefficients in the relation (9.5), which make
the correlation between the random numbers very noticeable. Figure 9.3(a) shows a plot
of 10,000 random numbers generated by randu and plotted in triples (ui,ui+1,ui+2).
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of Marsaglia and Tsang [15], essentially a very efficient way of inverting the cumulative
distribution function.

9.1 Exercises

1. Find the period of the linear congruential generator defined by (a) a = 2,b = 0,m = 5
(b) a = 4,b = 1,m = 9.

2. Find the period of the LCG defined by a = 4,b = 0,m = 9. Does the period depend on the
seed?

3. Approximate the area under the curve y = x2 for 0 ≤ x ≤ 1, using the LCG with
(a) a = 2,b = 0,m = 5 (b) a = 4,b = 1,m = 9.

4. Approximate the area under the curve y = 1 − x for 0 ≤ x ≤ 1, using the LCG with
(a) a = 2,b = 0,m = 5 (b) a = 4,b = 1,m = 9.

5. Consider the RANDNUM-CRAY random number generator, used on the Cray X-MP, one of
the first supercomputers. This LCG used m = 248,a = 224 + 3, and b = 0. Prove that
ui+2 = 6ui+1 − 9ui (mod 1). Is this worrisome? See Computer Problems 9 and 10.

9.1 Computer Problems

1. Implement the Minimal Standard random number generator, and find the Monte Carlo
approximation of the volume in Example 9.3. Use 106 three-dimensional points with seed
x0 = 1. How close is your approximation to the correct answer?

2. Implement randu and find the Monte Carlo approximation of the volume in Example 9.3, as
in Computer Problem 1. Verify that no point (ui,ui+1,ui+2) enters the given ball.

3. (a) Using calculus, find the area bounded by the two parabolas P1(x) = x2 − x + 1/2 and
P2(x) = −x2 + x + 1/2. (b) Estimate the area as a Type 1 Monte Carlo simulation, by finding
the average value of P2(x) − P1(x) on [0,1]. Find estimates for n = 10i for 2 ≤ i ≤ 6.
(c) Same as (b), but estimate as a Type 2 Monte Carlo problem: Find the proportion of points in
the square [0,1] × [0,1] that lie between the parabolas. Compare the efficiency of the two
Monte Carlo approaches.

4. Carry out the steps of Computer Problem 3 for the subset of the first quadrant bounded by the
polynomials P1(x) = x3 and P2(x) = 2x − x2.

5. Use n = 104 pseudo-random points to estimate the interior area of the ellipses
(a) 13x2 + 34xy + 25y2 ≤ 1 in −1 ≤ x,y ≤ 1 and (b) 40x2 + 25y2 + y +
9/4 ≤ 52xy + 14x in 0 ≤ x,y ≤ 1. Compare your estimate with the correct areas (a) π/6 and
(b) π/18, and report the error of the estimate. Repeat with n = 106 and compare results.

6. Use n = 104 pseudo-random points to estimate the interior volume of the ellipsoid defined by
2 + 4x2 + 4z2 + y2 ≤ 4x + 4z + y, contained in the unit cube 0 ≤ x,y,z ≤ 1. Compare
your estimate with the correct volume π/24, and report the error. Repeat with n = 106 points.
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7. (a) Use calculus to evaluate the integral
∫ 1

0

∫ √
x

x2 xy dy dx. (b) Use n = 106 pairs in the unit
square [0,1] × [0,1] to estimate the integral as a Type 1 Monte Carlo problem. (Average the
function that is equal to xy if (x,y) is in the integration domain and 0 if not.)

8. Use 106 random pairs in the unit square to estimate
∫
A

xy dx dy, where A is the area described
by Example 9.2.

9. Implement the questionable random number generator from Exercise 5, and draw the plot
analogous to Figure 9.3.

10. Devise a Monte Carlo approximation problem that completely foils the RANDNUM-CRAY
generator of Exercise 5, following the ideas of Example 9.3.

9.2 MONTE CARLO SIMULATION

We have already seen examples of two types of Monte Carlo simulation. In this section,
we explore the range of problems that are suited for this technique and discuss some of the
refinements that make it work better, including quasi-random numbers. We will need to use
the language of random variables and expected values in this section.

9.2.1 Power laws for Monte Carlo estimation

We would like to understand the convergence rate of Monte Carlo simulation. At what rate
does the estimation error decrease as the number of points n used in the estimate grows?
This is similar to the convergence questions in Chapter 5 for the quadrature methods and
in Chapters 6, 7, and 8 for differential equation solvers. In the previous cases, they were
posed as questions about error versus step size. Cutting the step size is analogous to adding
more random numbers in Monte Carlo simulations.

Think of Type 1 Monte Carlo as the calculation of a function mean using random
samples, then multiplying by the volume of the integration region. Calculating a function
mean can be viewed as calculating the mean of a probability distribution given by that
function. We will use the notation E(X) for the expected value of the random variable X.
The variance of a random variable X is E[(X − E(X))2], and the standard deviation of
X is the square root of its variance. The error expected in estimating the mean will decrease
with the number n of random points, in the following way:

Type 1 or Type 2 Monte Carlo with pseudo-random numbers.

Error ∝ n− 1
2 (9.9)

To understand this formula, view the integral as the volume of the domain times the
mean value A of the function over the domain. Consider the identical random variables
Xi corresponding to a function evaluation at a random point. Then the mean value is the
expected value of the random variable Y = (X1 + ·· · + Xn)/n, or

E

[
X1 + ·· · + Xn

n

]
= nA/n = A,
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the probability is 2/π that the needle will straddle both colors. (a) Prove this result analytically.
Consider the distance d of the needle’s midpoint to the nearest edge, and its angle θ with the
stripes. Express the probability as a simple integral. (b) Design a Monte Carlo Type 2 simulation
that approximates the probability, and carry it out with n = 106 pseudo-random pairs (d,θ).

7. (a) What proportion of 2 × 2 matrices with entries in the interval [0,1] have positive
determinant? Find the exact value, and approximate with a Monte Carlo simulation. (b) What
proportion of symmetric 2 × 2 matrices with entries in [0,1] have positive determinant? Find
the exact value and approximate with a Monte Carlo simulation.

8. Run a Monte Carlo simulation to approximate the proportion of 2 × 2 matrices with entries in
[−1,1] whose eigenvalues are both real.

9. What proportion of 4 × 4 matrices with entries in [0,1] undergo no row exchanges under
partial pivoting? Use a Monte Carlo simulation involving Matlab’s lu command to estimate
this probability.

9.3 DISCRETE AND CONTINUOUS BROWNIAN MOTION

Although previous chapters of this book have focused largely on principles that are important
for the mathematics of deterministic models, these models are only a part of the arsenal of
modern techniques. One of the most important applications of random numbers is to make
stochastic modeling possible.

We will begin with one of the simplest stochastic models, the random walk, also called
discrete Brownian motion. The basic principles that underlie this discrete model are essen-
tially the same for the more sophisticated models that follow, based on continuous Brownian
motion.

9.3.1 Random walks

A random walk Wt is defined on the real line by starting at W0 = 0 and moving a step
of length si at each integer time i, where the si are independent and identically distributed
random variables. Here we will assume each si is +1 or −1 with equal probability 1/2.
Discrete Brownian motion is defined to be the random walk given by the sequence of
accumulated steps

Wt = W0 + s1 + s2 + ·· · + st ,

for t = 0,1,2, . . . Figure 9.8 illustrates a single realization of discrete Brownian motion.
The following Matlab code carries out a random walk of 10 steps:

t=10;
w=0;
for i=1:t
if rand>1/2
w=w+1;

else
w=w-1;

end
end
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The next one is different:

1 + ωn + ω2n + ω3n + ·· · + ωn(n−1) = 1 + 1 + 1 + 1 + ·· · + 1

= n. (10.6)

This information is collected into the following lemma.

LEMMA 10.1 Primitive roots of unity. Let ω be a primitive nth root of unity and k be an integer. Then

n−1∑
j=0

ωjk =
{

n if k/n is an integer
0 otherwise

.

Exercise 6 asks the reader to fill in the details of the proof.

10.1.2 Discrete Fourier Transform

Let x = [x0, . . . ,xn−1]T be a (real-valued) n-dimensional vector, and denote ω = e−i2π/n.
Here is the fundamental definition of this chapter.

DEFINITION 10.2 The Discrete FourierTransform (DFT) of x = [x0, . . . ,xn−1]T is the n-dimensional vector
y = [y0, . . . ,yn−1], where ω = e−i2π/n and

yk = 1√
n

n−1∑
j=0

xjω
jk. (10.7)

For example, Lemma 10.1 shows that the DFT of x = [1,1, . . . ,1] is y = [√n,0, . . . ,0].
In matrix terms, this definition says




y0
y1
y2
...

yn−1




=




a0 + ib0
a1 + ib1
a2 + ib2

...

an−1 + ibn−1




= 1√
n




ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

ω0 ω3 ω6 · · · ω3(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)2







x0
x1
x2
...

xn−1




.

(10.8)

Each yk = ak + ibk is a complex number. The n × n matrix in (10.8) is called the Fourier
matrix

Fn = 1√
n




ω0 ω0 ω0 · · · ω0

ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ω2(n−1)

ω0 ω3 ω6 · · · ω3(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · · ω(n−1)2




. (10.9)
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Putting the pieces together, this corresponds to the following operations:

√
p · ifft[p]

√
p

n

1√
n

· fft[n] = p

n
· ifft[p] · fft[n]. (10.22)

Of course, F−1
p can only be applied to a length p vector, so we need to place the

degree n Fourier coefficients into a length p vector before inverting. The short program
dftinterp.m carries out these steps.

%Program 10.1 Fourier interpolation
%Interpolate n data points on [c,d] with trig function P(t)
% and plot interpolant at p (>=n) evenly spaced points.
%Input: interval [c,d], data points x, even number of data
% points n, even number p>=n
%Output: data points of interpolant xp
function xp=dftinterp(inter,x,n,p)
c=inter(1);d=inter(2);t=c+(d-c)*(0:n-1)/n; tp=c+(d-c)*(0:p-1)/p;
y=fft(x); % apply DFT
yp=zeros(p,1); % yp will hold coefficients for ifft
yp(1:n/2+1)=y(1:n/2+1); % move n frequencies from n to p
yp(p-n/2+2:p)=y(n/2+2:n); % same for upper tier
xp=real(ifft(yp))*(p/n); % invert fft to recover data
plot(t,x,’o’,tp,xp) % plot data points and interpolant

Running the function dftinterp([0, 1], [−2.2 −2.8 −6.1 −3.9 0.0
1.1 −0.6 −1.1],8,100), for example, produces the p = 100 plotted points in
Figure 10.6 without explicitly using sines or cosines. A few comments on the code are
in order. The goal is to apply fft[n], followed by ifft[p], and then multiply by p/n.
After applying fft to the n values in x, the coefficients in the vector y are moved from
the n frequencies in Pn(t) to a vector yp holding p frequencies, where p ≥ n. There are
many higher frequencies among the p frequencies that are not used by Pn, which leads to
zero coefficients in those high frequencies, in positions n/2 + 2 to p/2 + 1. The upper half
of the entries in yp gives a recapitulation of the lower half, with complex conjugates and
in reverse order, following (10.13). After the DFT is inverted with the ifft command,
although theoretically the result is real, computationally there may be a small imaginary
part due to rounding. This is removed by applying the real command.

A particularly simple and useful case is c = 0,d = n. The data points xj are collected
at the integer interpolation nodes sj = j for j = 0, . . . ,n − 1. The points (j ,xj ) are inter-
polated by the trigonometric function

Pn(s) = a0√
n

+ 2√
n

n/2−1∑
k=1

(
ak cos

2kπ

n
s − bk sin

2kπ

n
s

)
+ an/2√

n
cosπs. (10.23)

In Chapter 11, we will use integer interpolation nodes exclusively, for compatibility with
the usual conventions for audio and image data compression algorithms.
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10.2 Exercises

1. Use the DFT and Corollary 10.8 to find the trigonometric interpolating function for the
following data:

(a)

t x

0 0
1
4 1
1
2 0
3
4 −1

(b)

t x

0 1
1
4 1
1
2 −1
3
4 −1

(c)

t x

0 −1
1
4 1
1
2 −1
3
4 1

(d)

t x

0 1
1
4 1
1
2 1
3
4 1

2. Use (10.23) to find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1 1
2 0
3 −1

(b)

t x

0 1
1 1
2 −1
3 −1

(c)

t x

0 1
1 2
2 4
3 1

(d)

t x

0 1
1 0
2 1
3 0

3. Find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1
8 1
1
4 0
3
8 −1
1
2 0
5
8 1
3
4 0
7
8 −1

(b)

t x

0 1
1
8 2
1
4 1
3
8 0
1
2 1
5
8 2
3
4 1
7
8 0

(c)

t x

0 1
1
8 1
1
4 1
3
8 1
1
2 0
5
8 0
3
4 0
7
8 0

(d)

t x

0 1
1
8 −1
1
4 1
3
8 −1
1
2 1
5
8 −1
3
4 1
7
8 −1

4. Find the trigonometric interpolating function for the following data:

(a)

t x

0 0
1 1
2 0
3 −1
4 0
5 1
6 0
7 −1

(b)

t x

0 1
1 2
2 1
3 0
4 1
5 2
6 1
7 0

(c)

t x

0 1
1 0
2 1
3 0
4 1
5 0
6 1
7 0

(d)

t x

0 −1
1 0
2 0
3 0
4 1
5 0
6 0
7 0

5. Find a version of (10.19) for the interpolating function in the case where n is odd.
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10.2 Computer Problems

1. Find the order 8 trigonometric interpolating function P8(t) for the following data:

(a)

t x

0 0
1
8 1
1
4 2
3
8 3
1
2 4
5
8 5
3
4 6
7
8 7

(b)

t x

0 2
1
8 −1
1
4 0
3
8 1
1
2 1
5
8 3
3
4 −1
7
8 −1

(c)

t x

0 3
1 1
2 4
3 2
4 3
5 1
6 4
7 2

(d)

t x

1 1
2 −2
3 5
4 3
5 −2
6 −3
7 1
8 2

Plot the data points and P8(t).

2. Find the order 8 trigonometric interpolating function P8(t) for the following data:

(a)

t x

0 6
1
8 5
1
4 4
3
8 3
1
2 2
5
8 1
3
4 0
7
8 −1

(b)

t x

0 3
1
8 1
1
4 2
3
8 −1
1
2 −1
5
8 −2
3
4 3
7
8 0

(c)

t x

0 1
2 2
4 4
6 −1
8 0

10 1
12 0
14 2

(d)

t x

−7 2
−5 1
−3 0
−1 5

1 7
3 2
5 1
7 −4

Plot the data points and P8(t).

3. Find the order n = 8 trigonometric interpolating function for f (t) = et at the evenly spaced
points (j/8,f (j/8)) for j = 0, . . . ,7. Plot f (t), the data points, and the interpolating function.

4. Plot the interpolating function Pn(t) on [0,1] in Computer Problem 3, along with the data
points and f (t) = et for (a) n = 16 (b) n = 32.

5. Find the order 8 trigonometric interpolating function for f (t) = ln t at the evenly spaced points
(1 + j/8,f (1 + j/8)) for j = 0, . . . ,7. Plot f (t), the data points, and the interpolating
function.

6. Plot the interpolating function Pn(t) on [0,1] in Computer Problem 5, along with the data
points and f (t) = ln t for (a) n = 16 (b) n = 32.

10.3 THE FFT AND SIGNAL PROCESSING

The DFT Interpolation Theorem 10.6 is just one application of the Fourier transform. In this
section, we look at interpolation from a more general point of view, which will show how
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EXAMPLE 10.4 Let [c,d] be an interval and let n be an even positive integer. Show that the assumptions
of Theorem 10.9 are satisfied for tj = c + j(d − c)/n, j = 0, . . . ,n − 1, and

f0(t) =
√

1

n

f1(t) =
√

2

n
cos

2π(t − c)

d − c

f2(t) =
√

2

n
sin

2π(t − c)

d − c

f3(t) =
√

2

n
cos

4π(t − c)

d − c

f4(t) =
√

2

n
sin

4π(t − c)

d − c

...

fn−1(t) = 1√
n

cos
nπ(t − c)

d − c
.

The matrix is

A =
√

2

n




1√
2

1√
2

· · · 1√
2

1 cos 2π
n

· · · cos 2π(n−1)
n

0 sin 2π
n

· · · sin 2π(n−1)
n

...
...

...
1√
2

1√
2

cosπ · · · 1√
2

cos(n − 1)π




. (10.25)

Lemma 10.10 shows that the rows of A are pairwise orthogonal.
▲

LEMMA 10.10 Let n ≥ 1 and k, l be integers. Then

n−1∑
j=0

cos
2πjk

n
cos

2πjl

n
=




n if both (k − l)/n and (k + l)/n are integers
n
2 if exactly one of (k − l)/n and (k + l)/n is an integer

0 if neither is an integer

n−1∑
j=0

cos
2πjk

n
sin

2πjl

n
= 0

n−1∑
j=0

sin
2πjk

n
sin

2πjl

n
=




0 if both (k − l)/n and (k + l)/n are integers
n
2 if (k − l)/n is an integer and (k + l)/n is not

−n
2 if (k + l)/n is an integer and (k − l)/n is not

0 if neither is an integer
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is part of a vast literature on signal processing, and the reader is referred to [9] for further
study. In Reality Check 10, we investigate a filter of widespread application called the
Wiener filter.

10.3 Exercises

1. Find the best order 2 least squares approximation to the data in Exercise 10.2.1, using the basis
functions 1 and cos2πt .

2. Find the best order 3 least squares approximation to the data in Exercise 10.2.1, using the basis
functions 1,cos2πt , and sin 2πt .

3. Find the best order 4 least squares approximation to the data in Exercise 10.2.3, using the basis
functions 1,cos2πt , sin 2πt , and cos4πt .

4. Find the best order 4 least squares approximation to the data in Exercise 10.2.4, using the basis
functions 1,cos π

4 t , sin π
4 t , and cos π

2 t .

5. Prove Lemma 10.10. (Hint: Express cos2πjk/n as (ei2πjk/n + e−i2πjk/n)/2, and write
everything in terms of ω = e−i2π/n, so that Lemma 10.1 can be applied.)

10.3 Computer Problems

1. Find the least squares trigonometric approximating functions of orders m = 2 and 4 for the
following data points:

(a)

t y

0 3
1
4 0
1
2 −3
3
4 0

(b)

t y

0 2
1
4 0
1
2 5
3
4 1

(c)

t y

0 5
1 2
2 6
3 1

(d)

t y

1 −1
2 1
3 4
4 3
5 3
6 2

Using dftfilter.m, plot the data points and the approximating functions, as in Figure 10.7.

2. Find the least squares trigonometric approximating functions of orders 4,6, and 8 for the
following data points:

(a)

t y

0 3
1
8 0
1
4 −3
3
8 0
1
2 3
5
8 0
3
4 −6
7
8 0

(b)

t y

0 1
1
8 0
1
4 −2
3
8 1
1
2 3
5
8 0
3
4 −2
7
8 1

(c)

t y

0 1
1
8 2
1
4 3
3
8 1
1
2 −1
5
8 −1
3
4 −3
7
8 0

(d)

t y

0 4.2
1
8 5.0
1
4 3.8
3
8 1.6
1
2 −2.0
5
8 −1.4
3
4 0.0
7
8 1.0

Plot the data points and the approximating functions, as in Figure 10.7.
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The rows of an orthogonal matrix are pairwise orthogonal unit vectors. The orthogonality
of C follows from the fact that the columns of CT are the unit eigenvectors of the real
symmetric n × n matrix




1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1




. (11.5)

Exercise 6 asks the reader to verify this fact.
The fact that C is a real orthogonal matrix is what makes the DCT useful. The Orthog-

onal Function Interpolation Theorem 10.9 applied to the matrix C implies Theorem 11.2.

THEOREM 11.2 DCT Interpolation Theorem. Let x = [x0, . . . ,xn−1]T be a vector of n real numbers.
Define y = [y0, . . . ,yn−1]T = Cx, where C is the Discrete Cosine Transform. Then the
real function

Pn(t) = 1√
n
y0 +

√
2√
n

n−1∑
k=1

yk cos
k(2t + 1)π

2n

satisfies Pn(j) = xj for j = 0, . . . ,n − 1.

Proof. Follows directly from Theorem 10.9.

Theorem 11.2 shows that the n × n matrix C transforms n data points into n inter-
polation coefficients. Like the Discrete Fourier Transform, the Discrete Cosine Transform
gives coefficients for a trigonometric interpolation function. Unlike the DFT, the DCT uses
cosine terms only and is defined entirely in terms of real arithmetic.

EXAMPLE 11.1 Use the DCT to interpolate the points (0,1), (1,0), (2,−1), (3,0).

It is helpful to notice, using elementary trigonometry, that the 4 × 4 DCT matrix can
be viewed as

C = 1√
2




1√
2

1√
2

1√
2

1√
2

cos π
8 cos 3π

8 cos 5π
8 cos 7π

8

cos 2π
8 cos 6π

8 cos 10π
8 cos 14π

8

cos 3π
8 cos 9π

8 cos 15π
8 cos 21π

8


 = a




a a a a

b c −c −b

a −a −a a

c −b b −c


 , (11.6)

where

a = cos
π

4
= 1√

2
,b = cos

π

8
=
√

2 + √
2

2
,c = cos

3π

8
=
√

2 − √
2

2
. (11.7)
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3. Find the DCT of the following data vectors x, and find the corresponding interpolating
function Pn(t) for the data points (i,xi), i = 0, . . . ,n − 1 (you may state your answers in terms
of the b and c defined in (11.7)):

(a)

t x

0 1
1 0
2 1
3 0

(b)

t x

0 1
1 1
2 1
3 1

(c)

t x

0 1
1 0
2 0
3 0

(d)

t x

0 1
1 2
2 3
3 4

4. Find the DCT least squares approximation with m = 2 terms for the data in Exercise 3.

5. Carry out the trigonometry needed to establish equations (11.6) and (11.7).

6. (a) Prove the trigonometric formula cos(x + y) + cos(x − y) = 2cosx cosy for any x,y.
(b) Show that the columns of CT are eigenvectors of the matrix T in (11.5), and identify the
eigenvalues. (c) Show that the columns of CT are unit vectors.

7. Extend the DCT Interpolation Theorem 11.2 to the interval [c,d] as follows. Let n be a
positive integer and set �t = (d − c)/n. Use the DCT to produce a polynomial Pn(t) that
satisfies Pn(c + j�t ) = xj for j = 0, . . . ,n − 1.

11.1 Computer Problems

1. Plot the data from Exercise 3, along with the DCT interpolant and the DCT least squares
approximation with m = 2 terms.

2. Plot the data along with the m = 4,6, and 8 DCT least squares approximations.

(a)

t x

0 3
1 5
2 −1
3 3
4 1
5 3
6 −2
7 4

(b)

t x

0 4
1 1
2 −3
3 0
4 0
5 2
6 −4
7 0

(c)

t x

0 3
1 −1
2 −1
3 3
4 3
5 −1
6 −1
7 3

(d)

t x

0 4
1 2
2 −4
3 2
4 4
5 2
6 −4
7 2

3. Plot the function f (t), the data points (j ,f (j)),j = 0, . . . ,7, and the DCT interpolating
function. (a) f (t) = e−t/4 (b) f (t) = cos π

2 t .

11.2 TWO-DIMENSIONAL DCT AND IMAGE COMPRESSION

The two-dimensional Discrete Cosine Transform is often used to compress small blocks of
an image, as small as 8 × 8 pixels. The compression is lossy, meaning that some information
from the block is ignored. The key feature of the DCT is that it helps organize the information
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LEMMA 11.10 Denote by cj the j th column of the (extended) DCT4 matrix (11.27). Then (a) cj = c−1−j

for all integers j (the columns are symmetric around j = − 1
2 ), and (b) cj = −c2n−1−j for

all integers j (the columns are antisymmetric around j = n − 1
2 ).

Proof. To prove part (a) of the lemma, write j = − 1
2 + (j + 1

2 ) and −1 − j = − 1
2 −

(j + 1
2 ). Using the definition (11.27) yields

cj = c− 1
2 +(j+ 1

2 )
=
√

2

n
cos

(i + 1
2 )(j + 1

2 )π

n
=
√

2

n
cos

(i + 1
2 )(−j − 1

2 )π

n= c− 1
2 −(j+ 1

2 )
= c−1−j

for i = 0, . . . ,n − 1.
For the proof of (b), set r = n − 1

2 − j . Then j = n − 1
2 − r and 2n − 1 − j = n −

1
2 + r , and we must show that c

n− 1
2 −r

+ c
n− 1

2 +r
= 0. By the cosine addition formula,

c
n− 1

2 −r
=
√

2

n
cos

(2i + 1)(n − r)π

2n
=
√

2

n
cos

2i + 1

2
π cos

(2i + 1)rπ

2n

+
√

2

n
sin

2i + 1

2
π sin

(2i + 1)rπ

2n

c
n− 1

2 +r
=
√

2

n
cos

(2i + 1)(n + r)π

2n
=
√

2

n
cos

2i + 1

2
π cos

(2i + 1)rπ

2n

−
√

2

n
sin

2i + 1

2
π sin

(2i + 1)rπ

2n

for i = 0, . . . ,n − 1. Since cos 1
2 (2i + 1)π = 0 for all integers i, the sum c

n− 1
2 −r

+
c
n− 1

2 +r
= 0, as claimed.

We will use the DCT4 matrix E to build the Modified Discrete Cosine Transform.
Assume that n is even. We are going to create a new matrix, using the columns c n

2
, . . . ,c 5

2 n−1.

Lemma 11.10 shows that, for any integer j , the column cj can be expressed as one of the
columns of DCT4—that is, one of the ci for 0 ≤ i ≤ n − 1, as shown in Figure 11.10, up
to a possible sign change.

... ... ... ... ... ...c3 c2 c1 c0 c0 c1 c2

... ... ... ... ... ...c2c− 4 c−3 c−2 c−1 c0 c1

−c0 −c0 −c1

c2n−1 c2n

cn−1 −cn−1

cn−1 cn c2n+1

Figure 11.10 Illustration of Lemma 11.10. The columns c0, . . . , cn – 1 make up the
n × n DCT4 matrix. For integers j outside that range, the column defined by cj in
equation (11.27) still corresponds to one of the n columns of DCT4, according to
Lemma 11.10.

DEFINITION 11.11 Let n be an even positive integer. The Modified Discrete Cosine Transform (MDCT) of
x = (x0, . . . ,x2n−1)

T is the n-dimensional vector

y = Mx, (11.29)
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3. Find the characteristic polynomial and the eigenvalues and eigenvectors of the following
matrices:

(a)




1 0 1
0 3 −2
0 0 2


 (b)




1 0 − 1
3

0 1 2
3

−1 1 1


 (c)




− 1
2 − 1

2 − 1
6

−1 0 1
3

− 1
2

1
2

1
2




4. Prove that a square matrix and its transpose have the same characteristic polynomial, and
therefore the same set of eigenvalues.

5. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Power Iteration will converge, and determine the convergence rate constant S. (a) {3,1,4}
(b) {3,1,−4} (c) {−1,2,4} (d) {1,9,10}

6. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Power Iteration will converge, and determine the convergence rate constant S. (a) {1,2,7}
(b) {1,1,−4} (c) {0,−2,5} (d) {8,−9,10}

7. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Inverse Power Iteration with the given shift s will converge, and determine the convergence
rate constant S. (a) {3,1,4}, s = 0 (b) {3,1,−4}, s = 0 (c) {−1,2,4}, s = 0 (d) {1,9,10}, s = 6

8. Assume that A is a 3 × 3 matrix with the given eigenvalues. Decide to which eigenvalue
Inverse Power Iteration with the given shift s will converge, and determine the convergence
rate constant S. (a) {3,1,4}, s = 5 (b) {3,1,−4}, s = 4 (c) {−1,2,4}, s = 1 (d) {1,9,10}, s = 8

9. Let A =
[

1 2
4 3

]
. (a) Find all eigenvalues and eigenvectors of A. (b) Apply three steps of

Power Iteration with initial vector x0 = [1,0]. At each step, approximate the eigenvalue by the
current Rayleigh quotient. (c) Predict the result of applying Inverse Power Iteration with shift
s = 0 (d) with shift s = 3.

10. Let A =
[

−2 1
3 0

]
. Carry out the steps of Exercise 9 for this matrix.

11. If A is a 6 × 6 matrix with eigenvalues −6,−3,1,2,5,7, which eigenvalue of A will the
following algorithms find? (a) Power Iteration (b) Inverse Power Iteration with shift s = 4
(c) Find the linear convergence rates of the two computations. Which converges faster?

12.1 Computer Problems

1. Using the supplied code (or code of your own) for the Power Iteration method, find the
dominant eigenvector of A, and estimate the dominant eigenvalue by calculating a Rayleigh
quotient. Compare your conclusions with the corresponding part of Exercise 5.

(a)




10 −12 −6
5 −5 −4

−1 0 3


 (b)




−14 20 10
−19 27 12

23 −32 −13



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2. Put the matrix




1 0 2 3
−1 0 5 2

2 −2 0 0
2 −1 2 0


 into upper Hessenberg form.

3. Show that a symmetric matrix in Hessenberg form is tridiagonal.

4. Call a square matrix of nonnegative numbers stochastic if the entries of each column add to
one. Prove that a stochastic matrix (a) has an eigenvalue equal to one, and (b) all eigenvalues
are, at most, one in absolute value.

5. Carry out Normalized Simultaneous Iteration with the following matrices, and explain how it
fails:

(a)

[
0 1
1 0

]
(b)

[
0 1

−1 0

]

6. (a) Show that the determinant of a matrix in real Schur form is the product of the determinants
of the 1 × 1 and 2 × 2 blocks on the main diagonal. (b) Show that the eigenvalues of a matrix
in real Schur form are the eigenvalues of the 1 × 1 and 2 × 2 blocks on the main diagonal.

7. Decide whether the preliminary version of the QR algorithm finds the correct eigenvalues,
both before and after changing to Hessenberg form.

(a)




1 0 0
0 0 1
0 1 0


 (b)




0 0 1
0 1 0
1 0 0




8. Decide whether the general version of the QR algorithm finds the correct eigenvalues, both
before and after changing to Hessenberg form, for the matrices in Exercise 7.

12.2 Computer Problems

1. Apply the shifted QR algorithm (preliminary version shiftedqr0) with tolerance 10−14

directly to the following matrices:

(a)




−3 3 5
1 −5 −5
6 6 4


 (b)




3 1 2
1 3 −2
2 2 6


 (c)




17 1 2
1 17 −2
2 2 20


 (d)




−7 −8 1
17 18 −1
−8 −8 2




2. Apply the shifted QR algorithm directly to find all eigenvalues of the following matrices:

(a)




3 1 −2
4 1 1

−3 0 3


 (b)




1 5 4
2 −4 −3
0 −2 4


 (c)




1 1 −2
4 2 −3
0 −2 2


 (d)




5 −1 3
0 6 1
3 3 −3



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3. Apply the shifted QR algorithm directly to find all eigenvalues of the following matrices

(a)




−1 1 3
3 3 −2

−5 2 7


 (b)




7 −33 −15
2 26 7

−4 −50 −13


 (c)




8 0 5
−5 3 −5
10 0 13


 (d)




−3 −1 1
5 3 −1

−2 −2 0




4. Repeat Computer Problem 3, but precede the application of the QR iteration with reduction to
upper Hessenberg form. Print the Hessenberg form and the eigenvalues.

5. Apply the QR algorithm directly to find all real and complex eigenvalues of the following
matrices:

(a)




4 3 1
−5 −3 0

3 2 1


 (b)




3 2 0
−4 −2 1

2 1 0


 (c)




7 2 −4
−8 0 7

2 −1 −2


 (d)




11 4 −2
−10 0 5

4 1 2




6. Use the QR algorithm to find the eigenvalues. In each matrix, all eigenvalues have equal
magnitude, so Hessenberg may be needed. Compare the results of QR algorithm before and
after reduction to Hessenberg form.

(a)




−5 −10 −10 5
4 16 11 −8

12 13 8 −4
22 48 28 −19


 (b)




7 6 6 −3
−26 −20 −19 10

0 −1 0 0
−36 −28 −24 13


 (c)




13 10 10 −5
−20 −16 −15 8
−12 −9 −8 4
−30 −24 −20 11




12 HOW SEARCH ENGINES RATE PAGE QUALITY
Web search engines such as Google.com distinguish themselves by the quality of their
returns to search queries. We will discuss a rough approximation of Google’s method for
judging the quality of web pages by using knowledge of the network of links that exists on
the web.

When a web search is initiated, there is a rather complex series of tasks that are carried
out by the search engine. One obvious task is word-matching, to find pages that contain
the query words, in the title or body of the page. Another key task is to rate the pages
that are identified by the first task, to help the user wade through the possibly large set of
choices. For very specific queries, there may be only a few text matches, all of which can
be returned to the user. (In the early days of the web, there was a game to try to discover
search queries that resulted in exactly one hit.) In the case of very specific queries, the
quality of the returned pages is not so important, since no sorting may be necessary. The
need for a quality ranking becomes apparent for more general queries. For example, the
Google query “new automobile” returns several million pages, beginning with automobile
buying services, a reasonably useful outcome. How is the ranking determined?

The answer to this question is that Google.com assigns a nonnegative real number,
called the page rank, to each web page that it indexes. The page rank is computed by Google
in what is one of the world’s largest ongoing Power Iterations for determining eigenvectors.
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else % shrink simplex toward best point
for j=2:n+1
x(:,j) = 0.5*x(:,1)+0.5*x(:,j); y(j) = f(x(:,j));

end
end

end
end
[y,r] = sort(y); % resort the obj function values
x=x(:,r); % and rank the vertices the same way

end

The code implements the flowchart in Figure 13.5(b). The number of iteration steps is
required as an input. Computer Problem 8 asks the reader to rewrite the code with a stopping
criterion based on a user-given error tolerance. A common stopping criterion is to require
both that the simplex has reduced in size to within a small distance tolerance and that the
maximum spread of the function values at the vertices is within a small tolerance. Matlab
implements the Nelder-Mead Method in its fminsearch command.

13.1 Exercises

1. Prove that the functions are unimodal on some interval and find the absolute minimum and
where it occurs. (a) f (x) = ex + e−x (b) f (x) = x6 (c) f (x) = 2x4 + x (d) f (x) = x − lnx

2. Find the absolute minimum in the given interval and at which x it occurs.
(a) f (x) = cosx, [3,4] (b) f (x) = 2x3 + 3x2 − 12x + 3, [0,2]
(c) f (x) = x3 + 6x2 + 5, [−5,5] (d) f (x) = 2x + e−x, [−5,5]

13.1 Computer Problems

1. Plot the function y = f (x), and find a length-one starting interval on which f is unimodal
around each relative minimum. Then apply Golden Section Search to locate each of the
function’s relative minima to within five correct digits.
(a) f (x) = 2x4 + 3x2 − 4x + 5 (b) f (x) = 3x4 + 4x3 − 12x2 + 5
(c) f (x) = x6 + 3x4 − 2x3 + x2 − x − 7 (d) f (x) = x6 + 3x4 − 12x3 + x2 − x − 7

2. Apply Successive Parabolic Interpolation to the functions in Computer Problem 1. Locate the
minima to within five correct digits.

3. Find the point on the hyperbola y = 1/x closest to the point (2,3) in two different ways: (a) by
Newton’s Method applied to find a critical point (b) by Golden Section Search on the square of
the distance between a point on the conic and (2,3).

4. Find the point on the ellipse 4x2 + 9y2 = 4 farthest from (1,5), using methods (a) and (b) of
Computer Problem 3.

5. Use the Nelder-Mead Method to find the minimum of f (x,y) = e−x2y2 + (x − 1)2 +
(y − 1)2. Try various initial conditions, and compare answers. How many correct digits can
you obtain by using this method?
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7. (a) P(x) = (x − 1) − (x − 1)2/2 + (x − 1)3/3 − (x − 1)4/4 (b) P(0.9) = −0.1053583,

P(1.1) = 0.0953083 (c) error bound = 0.000003387 for x = 0.9, 0.000002 for x = 1.1 (d) Actual

error ≈ 0.00000218 at x = 0.9, 0.00000185 at x = 1.1

9.
√

1 + x = 1 + x/2 ± x2/8. For x = 1.02,
√

1.02 ≈ 1.01 ± 0.00005. Actual value is
√

1.02 = 1.0099505,

error = 0.0000495

CHAPTER 1
1.1 Exercises

1. (a) [2,3] (b) [1,2] (c) [6,7]
3. (a) 2.125 (b) 1.125 (c) 6.875

5. (a) [2,3] (b) 33 steps

1.1 Computer Problems

1. (a) 2.080083 (b) 1.169726 (c) 6.776092

3. (a) Intervals [−2,−1], [−1,0], [1,2], roots −1.641783,−0.168254,1.810038 (b) Intervals

[−2,−1], [−0.5,0.5], [0.5,1.5], roots −1.023482,0.163823,0.788942 (c) Intervals

[−1.7,−0.7], [−0.7,0.3], [0.3,1.3], roots −0.818094,0,0.506308

5. (a) [1,2], 27 steps, 1.25992105 (b) [1,2], 27 steps, 1.44224957 (c) [1,2], 27 steps, 1.70997595

7. first root −17.188498, determinant correct to 2 places; second root 9.708299, determinant correct to 3 places.

9. H = 635.5mm

1.2 Exercises

1. (a) loc. convergent (b) divergent (c) divergent

3. (a) 0 is locally convergent, 1 is divergent (b) 1/2 is locally convergent, 3/4 is divergent

5. (a) For example, x = x3 + ex,x = (x − ex)1/3, and x = ln(x − x3); (b) For example, x = 9x2 + 3/x3,

x = 1/9 − 1/3x4, and x = (x5 − 9x6)/3

7. g(x) = √
(1 − x)/2 is locally convergent to 1/2, and g(x) = −√

(1 − x)/2 is locally convergent to −1.

9. g(x) = (x + A/x2)/2 converges to A1/3.

11. (a) Substitute and check (b) |g′(r)| > 1 for all three fixed points r

13. g′(r2) > 1

17. (a) x = x − x3 implies x = 0 (b) If 0 < xi < 1, then xi+1 = xi − x3
i = xi(1 − x2

i ) < xi , and

0 < xi+1 < xi < 1. (c) The bounded monotonic sequence xi converges to a limit L, which must be a fixed point.

Therefore L = 0.

19. (a) c < −2 (b) c = −4

21. The open interval (−5/4,5/4) of initial guesses converge to the fixed point 1/4; the two initial guesses −5/4,5/4

lead to −5/4.

1.2 Computer Problems

1. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

3. (a) 1.73205081 (b) 2.23606798
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5. fixed point is r = 0.641714 and S = |g′(r)| ≈ 0.959

7. (a) 0 < x0 < 1 (b) 1 < x0 < 2 (c) x0 > 2.2, for example

1.3 Exercises

1. (a) FE = 0.01, BE = 0.04 (b) FE = 0.01, BE = 0.0016 (c) FE = 0.01, BE = 0.000064

(d) FE = 0.01, BE = 0.342

3. (a) 2 (b) FE = 0.0001, BE = 5 × 10−9

5. BE = |a| FE

7. (b) (−1)j (j − 1)!(20 − j)!

1.3 Computer Problems

1. (a) m = 3 (b) xc = FE = 2.0735 × 10−8, BE = 0

3. (a) xc = FE = 0.000169, BE = 0 (b) Terminates after 13 steps, xc = −0.00006103

5. Predicted root = r + �r = 4 + 4610−6/6 = 4.0006826, actual root = 4.0006825

1.4 Exercises

1. (a) x1 = 2,x2 = 18/13 (b) x1 = 1,x2 = 1 (c) x1 = −1,x2 = −2/3

3. (a) r = −1,ei+1 = 5
2 e2

i ; r = 0,ei+1 = 2e2
i ; r = 1,ei+1 = 2

3 ei (b) r = −1/2,ei+1 = 2e2
i ; r = 1,ei+1 = 2

3 ei

5. r = 0, Newton’s Method; r = 1/2, Bisection Method

7. No, 2/3

9. xi+1 = (xi + A/xi)/2

11. xi+1 = (n − 1)xi/n + A/(nxn−1
i )

13. (a) 0.75 × 10−12 (b) 0.5 × 10−18

1.4 Computer Problems

1. (a) 1.76929235 (b) 1.67282170 (c) 1.12998050

3. (a) r = −2/3,m = 3 (b) r = 1/6,m = 2

5. r = 3.2362 m

7. −1.197624, quadratic conv.; 0, linear conv., m = 4; 1.530134, quadratic conv.

9. 0.857143, quadratic conv., M = 2.414; 2, linear conv., m = 3,S = 2/3

11. initial guess = 1.75, solution V = 1.70 L

13. 3/4

1.5 Exercises

1. (a) x2 = 8/5,x3 = 1.742268 (b) x2 = 1.578707,x3 = 1.66016 (c) x2 = 1.092907,x3 = 1.119357

3. (a) x3 = −1/5,x4 = −0.11996018 (b) x3 = 1.757713,x4 = 1.662531 (c) x3 = 1.139481,x4 = 1.129272
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3. (a) One, P(x) = 3 + (x + 1)(x − 2) (b) None (c) Infinitely many, for example

P(x) = 3 + (x + 1)(x − 2) + (x + 1)(x − 1)(x − 2)(x − 3)

5. (a) P(x) = 4 − 2x (b) P(x) = 4 − 2x + A(x + 2)x(x − 1)(x − 3) for A �= 0

7. 4

9. (a) P(x) = 10(x − 1) · · ·(x − 6)/6! (b) Same as (a)

11. None

13. (a) 316 (b) 465

15. (a) 1
2 n2 + 3

2 n − 1 additions and n(2n − 2) multiplications (b) 2n − 2 additions and n − 1 multiplications

3.1 Computer Problems

1. (a) 4494564854 (b) 4454831984 (c) 4472888288

3.2 Exercises

1. (a) P2(x) = 2
π

x − 4
π2 x(x − π/2) (b) P2(π/4) = 3/4 (c) π3/128 ≈ 0.242 (d) |√2/2 − 3/4| ≈ 0.043

3. (a) 7.06 × 10−11 (b) at least 9 decimal places, since 7.06 × 10−11 < 0.5 × 10−9

5. Expect errors at x = 0.35 to be smaller; approximately 5/21 the size of the error at x = 0.55.

3.2 Computer Problems

1. (a) P4(x) = 1.433329 + (x − 0.6)(1.98987 + (x − 0.7)(3.2589 + (x − 0.8)(3.680667 +
(x − 0.9)(4.000417)))) (b) P4(0.82) = 1.95891,P4(0.98) = 2.612848 (c) Upper bound for error at x = 0.82

is 0.0000537, actual error is 0.0000234. Upper bound for error at x = 0.98 is 0.000217, actual error is 0.000107.

3. −1.952 × 1012 bbl/day. The estimate is nonsensical, due to the Runge phenomenon.

3.3 Exercises

1. (a) cosπ/12,cosπ/4,cos5π/12,cos7π/12,cos3π/4,cos11π/12

(b) 2cosπ/8,2cos3π/8,2cos5π/8,2cos7π/8

(c) 8 + 4cosπ/12,8 + 4cosπ/4,8 + 4cos5π/12,8 + 4cos7π/12,8 + 4cos3π/4,8 + 4cos11π/12

(d) 1/5 + 1/2cosπ/10,1/5 + 1/2cos3π/10,1/5,1/5 + 1/2cos7π/10,1/5 + 1/2cos9π/10

3. 0.000118, 3 correct digits

5. 0.00521

7. d = 14

9. (a) −1 (b) 1 (c) 0 (d) 1 (e) 1 (f ) −1/2

3.4 Exercises

1. (a) not a cubic spline (b) cubic spline

3. (a) c = 9/4, natural (b) c = 4, parabolically-terminated and not-a-knot (c) c = 5/2, not-a-knot

5. One, S1(x) = S2(x) = x
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(d)

ti wi error

0.0 1.0000 0.0000

0.1 1.0000 0.0000

0.2 1.0003 0.0001

0.3 1.0022 0.0002

0.4 1.0097 0.0005

0.5 1.0306 0.0012

0.6 1.0785 0.0024

0.7 1.1778 0.0052

0.8 1.3754 0.0124

0.9 1.7711 0.0338

1.0 2.6107 0.1076

(e)

ti wi error

0.0 1.0000 0.0000

0.1 1.0907 0.0007

0.2 1.1686 0.0010

0.3 1.2375 0.0011

0.4 1.2995 0.0011

0.5 1.3561 0.0011

0.6 1.4083 0.0011

0.7 1.4570 0.0011

0.8 1.5026 0.0011

0.9 1.5456 0.0010

1.0 1.5864 0.0010

(f )

ti wi error

0.0 1.0000 0.0000

0.1 1.0000 0.0000

0.2 1.0003 0.0000

0.3 1.0019 0.0001

0.4 1.0062 0.0002

0.5 1.0151 0.0003

0.6 1.0311 0.0003

0.7 1.0564 0.0003

0.8 1.0931 0.0003

0.9 1.1426 0.0001

1.0 1.2051 0.0001

6.6 Exercises

1. (a) w = [0,0.0833,0.2778,0.6204,1.1605], error = 0.4422

(b) w = [0,0.0500,0.1400,0.2620,0.4096], error = 0.0417

(c) w = [0,0.1667,0.4444,0.7963,1.1975], error = 0.0622

6.6 Computer Problems

1. (a) y = 1, Euler step size ≤ 1.8 (b) y = 1, Euler step size ≤ 1/3

6.7 Exercises

1. (a) w = [1.0000,1.0313,1.1250,1.2813,1.5000], error = 0

(b) w = [1.0000,1.0078,1.0314,1.1203,1.3243], error = 0.0713

(c) w = [1.0000,1.7188,3.0801,6.0081,12.7386], error = 7.3469

(d) w = [1.0000,1.0024,1.0098,1.1257,1.7540], error = 0.9642

(e) w = [1.0000,1.2050,1.3383,1.4616,1.5673], error = 0.0201

(f ) w = [1.0000,1.0020,1.0078,1.0520,1.1796], error = 0.0255

3. wi+1 = −4wi + 5wi−1 + h[4fi + 2fi−1]; No.

7. (a) 0 < a1 < 2 (b) a1 = 0

9. (a) second order unstable (b) second order strongly stable (c) third order strongly stable (d) third order

unstable (e) third order unstable

11. For example, a1 = 0,a2 = 1,b0 = 1,b1 = −1,b2 = 2.

13. (a) a1 + a2 + a3 = 1,−a2 − 2a3 + b1 + b2 + b3 = 1,a2 + 4a3 − 2b2 − 4b3 = 1,−a2 − 8a3 + 3b2 +
12b3 = 1 (c) P(x) = x3 − x2 has double root at 0, simple root at 1. (d) wi+1 = wi−1 +
h[ 7

3 fi − 2
3 fi−1 + 1

3 fi−2]
15. (a) a1 + a2 + a3 = 1,−a2 − 2a3 + b0 + b1 + b2 + b3 = 1,a2 + 4a3 + 2b0 − 2b2 − 4b3 = 1,

−a2 − 8a3 + 3b0 + 3b2 + 12b3 = 1,a2 + 16a3 + 4b0 − 4b2 − 32b3 = 1 (c) P(x) = x3 − x2 = x2(x − 1)

has simple root at 1.
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3. (a) 34 bits needed, 34/11 = 3.09 bits/symbol > 3.03 = Shannon inf. (b) 73 bits needed, 73/21 = 3.48

bits/symbol > 3.42 = Shannon inf. (c) 108 bits needed, 108/35 = 3.09 bits/symbol > 3.04 = Shannon inf.

11.4 Exercises

1. (a) [−12b − 2c,2b − 12c] (b) [−3b − c,b − 3c] (c) [−8b + 5c,−5b − 8c]
3. (a) +101., error = 0 (b) +101., error = 1/15 (c) +011., error = 1/35

5. (a) +110000., error = 1/170 (b) −101101., error = 1/85 (c) +1011100., error = 7/510

(d) +1100100., error ≈ 0.0043

7. (a) 1
2 (w2 + w3) = [−1.2246,0.9184] ≈ [−1,1] (b) 1

2 (w2 + w3) = [2.1539,−0.9293] ≈ [2,−1]
(c) 1

2 (w2 + w3) = [−1.7844,−3.0832] ≈ [−2,−3]
9. c5n = −cn−1,c6n = −c0

CHAPTER 12
12.1 Exercises

1. (a) P(λ) = (λ − 5)(λ − 2), 2 and [1,1], 5 and [1,−1] (b) P(λ) = (λ + 2)(λ − 2), −2 and [1,−1], 2 and

[1,1] (c) P(λ) = (λ − 3)(λ + 2), 3 and [−3,4], −2 and [4,3] (d) P(λ) = (λ − 100)(λ − 200), 200 and

[−3,4], 100 and [4,3]
3. (a) P(λ) = −(λ − 1)(λ − 2)(λ − 3), 3 and [0,1,0], 2 and [1,2,1], 1 and [1,0,0]

(b) P(λ) = −λ(λ − 1)(λ − 2), 2 and [−1,2,3], 1 and [1,1,0], 0 and [1,−2,3]
(c) P(λ) = −λ(λ − 1)(λ + 1), 1 and [1,−2,−3], 0 and [1,−2,3], −1 and [1,1,0]

5. (a) λ = 4,S = 3/4 (b) λ = −4,S = 3/4 (c) λ = 4,S = 1/2 (d) λ = 10,S = 9/10

7. (a) λ = 1,S = 1/3 (b) λ = 1,S = 1/3 (c) λ = −1,S = 1/2 (d) λ = 9,S = 3/4

9. (a) 5 and [1,2], −1 and [−1,1] (b) x1 = [1,4], RQ = 1; x2 = [9/
√

17,16/
√

17], RQ = 4.29;

x3 = [2.2334,4.5758], RQ = 5.08 (c) IPI converges to λ = −1. (d) IPI converges to λ = 5.

11. (a) 7 (b) 5 (c) S = 6/7,S = 1/2; IPI with s = 4 is faster.

12.1 Computer Problems

1. (a) converges to 4 and [1,1,−1] (b) converges to −4 and [1,1,−1] (c) converges to 4 and [1,1,−1]
(d) converges to 10 and [1,1,−1]

3. (a) λ = 4 (b) λ = 3 (c) λ = 2 (d) λ = 9

12.2 Exercises

1. (a)




1 − 1√
2

1√
2

−√
2 1

2
1
2

0 1
2

1
2


 (b)




1 0 0

0 0 −1

0 −1 0


 (c)




2 − 4
5 − 3

5
−5 37

25 − 16
25

0 9
25

13
25




(d)




1 − 1√
2

− 1√
2

−√
8 5

2
3
2

0 3
2

1
2



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3. (a) Best line y = 3.3028x; projections are

[
1.1934

3.9415

]
,

[
1.4707

4.8575

]
,

[
1.2774

4.2188

]
.

(b) Best line y = 0.3620x; projections are

[
1.7682

0.6402

]
,

[
3.8565

1.3963

]
,

[
3.2925

1.1921

]
.

(c) Best line (x(t),y(t),z(t)) = [0.3105,0.3416,0.8902]t ; projections are




1.3702

1.5527

4.0463


,




1.8325

2.0764

5.4111


,




1.8949

2.1471

5.5954







0.9989

1.1319

2.9498


.

5. (a)

[
3 0

4 0

]
=
[
−0.6 −0.8

−0.8 0.6

][
5 0

0 0

][
−1 0

0 1

]

(b)

[
6 −2

8 3
2

]
=
[

0.6 −0.8

0.8 0.6

][
10 0

0 5
2

][
1 0

0 1

]

(c)

[
0 1

0 0

]
=
[

1 0

0 1

][
1 0

0 0

][
0 1

1 0

]

(d)

[
−4 −12

12 11

]
=
[
−0.6 −0.8

0.8 −0.6

][
20 0

0 5

][
0.6 −0.8

0.8 0.6

]

(e)

[
0 −2

−1 0

]
=
[
−1 0

0 −1

][
2 0

0 1

][
0 1

1 0

]

CHAPTER 13
13.1 Exercises

1. (a) (0,2) (b) (0,0) (c) (−1/2,−3/8) (d) (1,1)

13.1 Computer Problems

1. (a) 1/2 (b) −2,1 (c) 0.47033 (d) 1.43791

3. (a), (b): (0.358555,2.788973)

5. (1.20881759,1.20881759), about 8 correct places

7. (1,1)

13.2 Computer Problems

1. Minimum is (1.2088176,1.2088176). Different initial conditions will yield answers that differ by about ε1/2.

3. (1,1). Newton’s Method will be accurate to machine precision, since it is finding a simple root. Steepest Descent will

have error of size ≈ ε1/2.

5. (a) (1.132638,−0.465972), (−0.465972,1.132638) (b) ±(0.6763,0.6763)


