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1 Introduction

In this section, we introduce the concept of the cubic spline, and how they are implemented
in Matlab. Of particular importance are the new Matlab data structures that we will see.

2 Cubic Splines Defined

Definition: Given n data points, (x1, y1), . . . , (xn, yn), a cubic spline is a piecewise-defined
function of the form:

S1(x) = y1 + b1(x− x1) + c1(x− x1)
2 + d1(x− x1)

3 for x ∈ [x1, x2]
S2(x) = y2 + b2(x− x2) + c2(x− x2)

2 + d2(x− x2)
3 for x ∈ [x2, x3]

...
...

Sn−1(x) = yn−1 + bn−1(x− xn−1) + cn−1(x− xn−1)
2 + dn−1(x− xn−1)

3 for x ∈ [xn−1, xn]

The 3n−3 unknowns (b’s, c’s, d’s) are chosen to satisfy the interpolation constraints and
also some smoothness constraints:

• (Interpolation Conditions) We already have Si(xi) = yi for i = 1 to n− 1. In addition,
we want the overall function to be continuous. At the interior points,

Si(xi+1) = Si+1(xi+1) = yi+1

and at the far right value of x, Sn−1(xn) = yn

Altogether, there are n− 1 constraints here.

• (Smoothness Condition 1) At the interior points,

Si
′(xi+1) = Si+1

′(xi+1)

There are n− 2 constraints here.

1



• (Smoothness Condition 2) At the interior points,

Si
′′(xi+1) = Si+1

′′(xi+1)

There are n− 2 constraints here.

So far, we have (n−1)+(n−2)+(n−2) = 3n−5 constraints, but we have 3(n−1) = 3n−3
coefficients. We need two more constraints to define the cubics uniquely.

2.1 Using the Two Extra Constraints

We can have different cubic splines depending on how we want to use our two extra con-
straints. Here are some common ones:

• (The Natural Spline) S1
′′(x1) = 0 = Sn−1

′′(xn)

• (The Clamped Spline) The user defines S1
′(x1) and Sn−1

′(xn)

• “Not-A-Knot”: The third derivatives match at x2 and xn−1- That is, S ′′′
1(x2) =

S ′′′
2(x2) and S ′′′

n−2(xn−2) = S ′′′
n−1(xn−2)

Normally, at this step we would include some data. Notice that with cubic splines, you
probably would not use them without at least 5 data points. With 4 data points, we could
use a single cubic, for example.

2.2 Derivatives and Integrals

We just note here the derivative and antiderivative of each piece of the cubic spline,

Si(x) = yi + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

Si
′(x) = bi + 2ci(x− xi) + 3di(x− xi)

2

and
Si

′′(x) = 2ci + 6di(x− xi)

The antiderivative (note the shift):∫
Si(x) dx = yi(x− xi) +

1

2
bi(x− xi)

2 +
1

3
ci(x− xi)

3 +
1

4
di(x− xi)

4

In particular, if we integrate over the interval [xi, xi+1] and the data is evenly spaced with
width h, then: ∫ xi+1

xi

Si(x) dx = yih +
1

2
bih

2 +
1

3
cih

3 +
1

4
dih

4



3 Matlab Data Structures

In Matlab, we can collect different types of data together into a single “structure”. For
example, suppose that you have a vector x and a matrix A and several constants, a, b, c that
you are going to be using over and over again. To wrap them up into a structure, you could
write:

Examp.x=x;

Examp.A=A;

Examp.constants=[a,b,c];

To access, for example, the (1, 3) element you’ve stored in the matrix A, you would type:
Examp.A(1,3)

You can create arrays of structures and structures within structures. For example, sup-
pose we use the data fitting tool in Matlab to create a spline:

x=0:10; y=sin(x);

plot(x,y,’r*’);

Choose Tools -> Basic Fitting from the menus at the top of the figure. Click on the
Spline Interpolant option, then click on the right arrow at the bottom right corner. We can
save the spline structure by selecting Save to Workspace (You can uncheck the residuals
boxes, just leave Save fit as a MATLAB struct named box. You can leave it named fit,
then press OK. Close down the dialog boxes and plots and return to Matlab.

Type in the word for the structure, fit and you’ll see a string, type: ’spline’ and
another structure, coeff. That is, fit.coeff is itself a structure- Type that in, and you’ll
see the contents:

>> fit.coeff

ans =

form: ’pp’

breaks: [0 1 2 3 4 5 6 7 8 9 10]

coefs: [10x4 double]

pieces: 10

order: 4

dim: 1

The actual spline coefficients are stored in the 10 × 4 array coefs. To see these, we would
type: fit.coeff.coefs.



3.1 Some Useful Array Commands

Suppose I want to delete the second column of the matrix A. In Matlab, I would type:
A(:,2)=[]; Note the use of the colon, : to denote “all rows”. Also, note that “delete”
means to remove that column altogether.

Suppose I want to multiply the third column by 5, and put that column back into A:
A(:,3)=5*A(:,3);

If I want to divide the elements of column 1 by the elements of column 2: A(:,1)./A(:,2);

3.2 Piecewise Polynomials

Matlab has built-in commands for dealing with piecewise-defined polynomials, like cubic
splines. A piecewise-defined polynomial is defined in Matlab by a vector containing the
breaks and a matrix defining the polynomial coefficients.

Caution: A vector of coefficients, like [3,2,1], over an interval like [2,3] is interpreted
by the piecewise polynomial routines as:

3(x− 2)2 + 2(x− 2) + 1 NOT 3x2 + 2x + 1

Example: Constructing a piecewise polynomial by hand:
Suppose we want to define the following:

P (x) =

{
x2 − 3x + 1 if x ∈ [1, 2)

3x− 5 if x ∈ [2, 3]

(NOTE: In the Matlab documentation, it is unclear which function is used to evaluate the
interior breaks. This is the way it is done- The intervals are all assumed to be of the form
[a, b) except the last interval.)

First we need to rewrite these1:

x2 − 3x + 1 = (x− 1)2 − (x− 1)− 1

and
3x− 5 = 3(x− 2) + 1

In Matlab, make the piecewise polynomial and plot the results:

breaks=[1,2,3];

coefs=[1,-1,-1;0,3,1];

pp=mkpp(breaks,coefs);

x=linspace(1,3);

y=ppval(pp,x);

plot(x,y);

1Is there an easy way to do this? Use a Taylor expansion based at the left endpoint.



4 Implementing Splines In Matlab

The relevent commands are:

spline ppval mkpp

(Also see the help page for any of these commands).
The spline command takes two forms, depending on what you want out:

pp = spline(x,y)

Builds the cubic spline using the data in x, y, and outputs the result as a piecewise polyno-
mial, pp. See the previous section for how Matlab defines and works with piecewise defined
functions.

The second command does not give the piecewise defined polynomial, rather it just
evaluates the cubic spline at given values of xin, defined below:

yout = spline(x,y,xin)

where the cubic spline uses the data in x and y, evaluates the cubic spline at data in the
vector xin, and gives the result in yout.

5 Matlab Exercises

In these exercises, go ahead and assume that the spline was constructed using Matlab’s
default algorithm.

1. What flavor of spline does Matlab use as its default? To verify your answer, look at
the matrix of spline coefficients. You might use the sine function as a quick example:

x=0:10;

y=sin(x);

pp=spline(x,y);

In particular, pay attention to the order of the coefficients- Which column corresponds
to constants?

2. How would we manipulate the coefficients to get the first, and second derivatives of a
spline? Write functions dspline, d2spline whose input is the original spline structure
(we called it pp in the previous exercise), and whose output will give you the derivatives
as a piecewise polynomial structure. When you do this, you have a choice as to whether
or not you want to change the degree of the polynomial.

Below is a sample function that returns the third derivative, and leaves the degree as
a cubic.



function pp=d3spline(pp)

% function p2 = d3spline(pp)

% Returns the piecewise polynomial that represents the third

% derivative of the cubic spline in the data structure pp.

% Example: x=0:10; y=sin(x); pp=spline(x,y);

% p2=d3spline(pp);

% xx=linspace(0,10);

% yy=ppval(p2,xx);

% plot(xx,yy);

A=zeros(size(pp.coefs)); %Initializes a matrix of zeros

A(:,4)=6*pp.coefs(:,1);

pp.coefs=A;

3. Do the same thing as before, but implement the antiderivative of the spline. Call the
function antispline, and assume the constant of integration is zero. Be sure you also
change pp.order.

Extra: If you plot the antiderivative, you will get a very choppy curve (because each
piece starts at zero). Is it possible to change this so that you get a smooth curve
starting at zero? How would this code then be used to numerically estimate a definite
integral?

4. We said before that the cubic spline is not well defined at the knots. That is, for the
knot xj, Matlab has to make a choice between using Sj or Sj+1. We know that it
doesn’t make a difference for the spline, its derivative or second derivative. Can you
use the third derivative to determine which function is used at an interior point? Do
it!

5. Use cubic splines and its antiderivative to estimate:∫ 3

−3
e−x2

dx

using 20 evenly spaced points. You might check your answer using Maple:

evalf(int(exp(-x^2),x=-3..3));

Another way to see how your estimate is doing is to re-do the estimate using more
points.


