
IEEE Floating Point Format

1. Definition: A floating point number consists of three parts: (i) The sign (+/-), (ii)
The Mantissa (string of significant digits [in base 2, bits]); (iii) The exponent.

A normalized floating point number is a number of the form:

±1.bbbbbb...b× 2p

where the number of b’s will vary depending on the precision, and p is the exponent
(from the floating pt number definition).

2. Levels of precision for floating point numbers (the integers below represent how many
bits will be used for the representation):

sign exponent mantissa
single 1 8 23
double 1 11 52
long double 1 15 64

Important Note: Unless otherwise stated, everything we do with floating point numbers
will be done in double precision.

3. Definition: Machine epsilon, εmach is the distance between the number 1 and the next
smallest number greater than 1. In double precision (which is what Matlab will use),

εmach = 2−52 ≈ 2.2× 10−16

4. IEEE rounding (to nearest neighbor): The bit of interest is in the 53d position (recall
we’re using double precision).

• If the bit is 0, round down (truncate after 52d bit)

• If the bit is 1, check the bits to the right:

– If they are not all zero (the usual choice), round up.

– If they are all zero, round up iff bit 52 is 1.

5. Definition: fl(x) is the floating point representation of x.

6. Example: Compute fl(1/3) and find the error in this approximation.

First, we see that (
1

3

)
10

=
(
0.01

)
2



To get this base 2 number into (normalized) floating point form,

1.010101 . . . 10 1︸︷︷︸
52d bit

010101 . . .× 2−2

so that the error (or tail) is 2−52 · 0.01× 2−2 = 1
3
· 2−54.

That leaves:
fl(1/3) = 1.010101 . . . 101× 2−2

With an error, in terms of εmach:
1
3
· 2−54 = 1

12
εmach


