In-Class Problems, Section 3.4-3.5

- 1. Let $F(c_1, c_2, \ldots, c_n) = c_1 a_1 + c_2 a_2 + \ldots + c_n a_n$, where every $c_i \ge 0$, $\sum_i c_i = 1$, and a_1, a_2, \ldots, a_n are given, fixed numbers. Find the maximum value of F.
- 2. Same function as before, except that the values of c_i are such that the only restriction is $|c_i| = 1$ for each *i*.
- 3. Show that if a is a real number, and |a| < 1, then:

$$\sum_{j=0}^{\infty} a^j = \frac{1}{1-a}$$

Hint: Expand and simplify: $(1-a)(1+a+a^2+a^3+\ldots+a^n)$

- 4. Let A be an $m \times n$ matrix, and $x \in \mathbb{R}^n$. How would we write $A\mathbf{x}$ in terms of the columns of A? How would we write $A\mathbf{x}$ in terms of the rows of A?
- 5. Show (using the definition) that: $||A||_1 = \text{maximum absolute column sum}$ Hint: Write $A\mathbf{x}$ in terms of the columns of A.
- 6. Show (using the definition) that $||A||_{\infty} =$ maximum absolute row sum Hint: Write $A\mathbf{x}$ in terms of the rows of A

Definition: Given a norm for vectors, $\|\mathbf{x}\|$, we defined the norm of a matrix:

$$||A|| = \max_{\mathbf{x} \in \mathbb{R}^n} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}|$$

- 7. Show that for any induced matrix norm, $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}||$
- 8. Let A, B be matrices. Show that for any induced matrix norm, $||AB|| \leq ||A|| ||B||$
- 9. Show that given an induced matrix norm, ||A|| = 0 iff A is the zero matrix.
- 10. Show that given an induced matrix norm, $||A + B|| \le ||A|| + ||B||$
- 11. Construct a 2×2 matrix A so that det(A) = 0, but $||A||_p \neq 0$ for $p = 1, \infty$.

Definition:¹ Given a matrix norm, the condition number for a matrix A is:

$$cond(A) = ||A|| ||A^{-1}||$$

¹There is a more general definition for the condition number of a function, but this is the accepted definition for the system $A\mathbf{x} = \mathbf{b}$

- 12. Show that for any induced matrix norm, $\operatorname{cond}(AB) \leq \operatorname{cond}(A)\operatorname{cond}(B)$
- 13. If A is a square matrix with ||A|| < 1, then $||(I A)^{-1}|| \le \frac{1}{1 ||A||}$ Hint: Look at Problem 3
- 14. Show that if A is invertible, and λ is an eval of A, then $\frac{1}{\lambda}$ is an eval of A^{-1} .

Definition: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$

- 15. Show that, if λ is an eigenvalue of $A^T A$, then $\lambda \ge 0$ (HINT: Compute $||A\mathbf{v}||_2^2$, where \mathbf{v} is the eigenvector associated with λ)
- 16. Recall that our book stated that $||A||_2 = \sqrt{\lambda_{\max}}$, where λ_{\max} is the largest eigenvalue of $A^T A$. Show that $||A^{-1}||_2 = \sqrt{\frac{1}{\lambda_{\min}}}$, where λ_{\min} is the smallest eigenvalue of $A^T A$. Note that this shows, using the 2-norm, $\operatorname{cond}(A) = \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}}$
- 17. Show that, using the 2-norm, $\operatorname{cond}(A^T A) = (\operatorname{cond}(A))^2$ What does this imply about solving the normal equation associated with $A\mathbf{x} = \mathbf{b}$.
- 18. Is the following a "norm" for a matrix A? Why or why not?

$$||A|| \stackrel{?}{=} |\det(A)|$$

19. Condition numbers are used tell us if small changes can produce large changes. In particular, let $A\mathbf{x} = \mathbf{b}$ and $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$, where $\tilde{\mathbf{x}} = \mathbf{x} + \Delta \mathbf{x}$ and $\tilde{\mathbf{b}} = \mathbf{b} + \Delta \mathbf{b}$. Show that:

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \operatorname{cond}(A) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

(Hint: Start with $\Delta x = A^{-1}\Delta b$) Similarly,

$$\frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \le \operatorname{cond}(A) \frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|}$$

Verify your results by looking at the sample computation on our class webpage (under the Chapter 3 Links).

The rule of thumb for condition numbers: **Expect to lose** $\log_{10}(\text{cond}(A))$ significant digits in solving $A\mathbf{x} = \mathbf{b}$