
In Class Problems: 4.1-4.4

1. Fill in the gaps in the proof of Theorem 4.2. Additionally, show that:

1

n!

∫ x

s
(x− t)nfn+1(t); , dt =

1

n + 1!
fn+1(α)(x− s)n+1

This shows that you can use either remainder formula.

2. (Problem 9, p. 61. You may use Maple for the diff/ints) Find the first three terms
of the Taylor expansion of 1/(1 + x2) about x = 0. On the interval from [−1, 1],
estimate the error using the two Taylor formulas, then compute the actual error. Are
the estimates reasonable?

3. (Error on Lagrange Polynomials) Suppose we are approximating f on x0, x1, . . . , xn

which are in the interval [a, b]. Let P be the Lagrange polynomial (which is degree n).
Let x∗ be a fixed value of x (not equal to any xi) in the interval [a, b]. Consider the
function g(t) given by:

g(t) = f(t)− P (t)− [f(x∗)− P (x∗)]
(t− x0)(t− x1) · · · (t− xn)

(x∗ − x0)(x∗ − x1) · · · (x∗ − xn)

(a) Show that g has n + 2 roots.

(b) This implies that gn+1(ξ) = 0 for some ξ ∈ [a, b] (Why?)

(c) Show that

dn+1

dtn+1

[
(t− x0)(t− x1) · · · (t− xn)

(x∗ − x0)(x∗ − x1) · · · (x∗ − xn)

]
=

(n + 1)!

(x∗ − x0)(x∗ − x1) · · · (x∗ − xn)

HINT: Don’t do this directly- Can you write a lemma about taking the kth deriva-
tive of a degree k polynomial?

(d) Put the previous items together to prove Theorem 4.3:

f(x)− P (x) =
f (n+1)(ξ)

(n + 1)!
(x− x0)(x− x1) · · · (x− xn)

4. (Newton’s Divided Differences: Be sure to read the text first, p. 64, 65). The form of
the polynomial is:

P (x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + . . . + cn(x− x0)(x− x1) · · · (x− xn−1)

We could get the formula for divided differences by considering:

f(x0) = P (x0) = c0

f(x1) = P (x1) = f(x0) + c1(x1 − x0) ⇒ c1 =
f(x1)− f(x0)

x1 − x0

and so on, but the table is very convenient.



(a) Compute the divided difference polynomial using a table for the data:

x −2 −1 0 1 2
y −1 3 1 −1 3

(b) Show that f [x0, x1, . . . , xn] = f (n)(ξ)
n!

. Hint 1: cn = f [x0, x1, . . . , xn]. Hint 2:
Consider g(x) = f(x)− Pn(x) and do something similar to Problem 5(b)

5. (Problem 12, p. 61) Extend the Weierstrass Theorem to show that, if f is differentiable
on [a, b], then for any ε > 0, there exists a polynomial pn(x) such that:

max
a≤x≤b

|f(x)− pn(x)| < ε and max
a≤x≤b

|f ′(x)− p′n(x)| < ε

This ensures that both position and velocity are well represented- Important in physics!

6. How would we actually compute the polynomial from the above problem? Given n+1
points, we could construct a polynomial like this:

H(x) = C +C0,1(x−x0)+C0,2(x−x0)
2 +C1,1(x−x0)

2(x−x1)+C1,2(x−x0)
2(x−x1)

2+

C2,1(x− x0)
2(x− x1)

2(x− x2) + C2,2(x− x0)
2(x− x1)

2(x− x2)
2 + . . .

+Cn,1(x− x0)
2(x− x1)

2 . . . (x− xn−1)
2(x− xn)

(a) What is the degree of H?

(b) How many unknown coefficients are there? How many conditions must H satisfy?

(c) What happens if x0 = x1 = x2 = . . . = xn?

(d) What form do you think H would take if we did not require the derivatives to
also be interpolated?

(e) Using the model and our requirements, we could write a system of linear equations:

f(x0) = C
f ′(x0) = C0,1

f(x1) = C + C0,1(x1 − x0) + C0,2(x1 − x0)
2

f ′(x1) = C0,1 + 2C0,2(x1 − x0) + C1,1
...

Continue these equations until you see a pattern. The polynomial considered here
is called the Hermite interpolating polynomial.

7. Using the previous problem as a template, how would we construct a polynomial p(x)
so that the polynomial agrees with f(x) at x0, x1, and f ′(x0) = p′(x0) and f ′′(x0) =
p′′(x0)? Find this polynomial if f(x) = e−x cos(x), and x0 = 0, x1 = 1, and verify your
results.


