
Matlab: Logic and Functions

In programming, it is important to be able to evaluate a statement as “true” or “false”.
Typically, this is done through Boolean variables. Here’s an example in Matlab:

>> x=[1 2 3 4 5];

>> x>2

>> ans =

0 0 1 1 1

Think: False, False, True, True, True. Here is another example. Figure out what Matlab will
return:

x=[5 2 3 -1 5];

x==max(x)

(See the bottom of the page for the answer1). As you might guess, the following symbols are
used for logic: ==, >=, <=, >, <. A common error is to use assignment (a single equality,
=) in place of a double equality ==.

If-then statements

Now that we know how to tell if a statement is true or false, we can create what is called an
“if-then” statement. For example, what will the following sequence of commands do?

A=[1 2;3 4];

if det(A)==0

fprintf(’The matrix is not invertible.\n’)

else

B=inv(A);

end

Changing A=[1 2;-2 -4];? The string shown above, The matrix is not invertible.

would print to the screen. You can see that executing these lines is cumbersome- We can
put them inside a function.

Functions in Matlab

Open the Matlab editor (type edit in the command window), and type the following function.
Once you’re done, save the file as myfunc01.m (it should be in the same directory as the one
the command window is using).

function [B,c]=myfunc01(A)

% function [B,c]=myfunc01(A)

% Input: square matrix A

% Output: If A is invertible, B is the inverse and c is the determinant.

if det(A)==0

11 0 0 0 1

1

fprintf(’The matrix is not invertible.\n’);

B=[]; c=0;

else

c=det(A);

B=inv(A);

end

To run this function, we can construct any matrix A, then get the outputs. To use this
function on some matrix in the command window, we would type (for example),

Z=[1 2;-2 -4];

[G,h]=myfunc(Z)

(in this case, Z is not invertible), or:

B=randn(3,3);

[H,j]=myfunc(B);

I’m using all these different variables to stress something: The variable names you use in a
function file are completely separate from the variable names that are used in the command
window. The variables used in the function file are local in the sense that they are erased
created and erased by the function itself.

Homework:

1. What is the Matlab command to create the array x which holds the integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be that zeros out the
even-numbered indices (That is, x(2), x(4), x(6), . . .)?

3. Using double precision floating point numbers (with the rounding rule), will 1 + x > 1?
Show by hand (and verify in Matlab), if (a) x = 2−53, and (b) x = 2−53 + 2−60.

4. Suppose that a matrix A has been defined. What does this line compute? (Hint: It has
something to do with the columns of A).

R=sqrt(sum(A.*A));

5. Set up the function and script file in the next section (banditE.m and banditScript.m)
and see that you can replicate the figure. The code is online. What does Matlab do
when you type the following? help banditE

A Case Study in Reinforcement Learning

There are several goals for us in looking at this first case study, but mainly we want to:

• Get a first look at a mathematical model.

• Get an introduction to Matlab and some Matlab programs.

2

In this template model, we consider the so-called n−armed bandit. The name comes from
a slang term for a slot machine, also known as a one-armed bandit.

In the n−armed bandit problem, we have n slot machines (or equivalently, one machine
with n−arms), each having a different probability of winning. The overall goal is to play the
slots in such a way as to maximize our winning.

The problem is that we do not know the payout value for any of the machines- Therefore,
our model of this situation will consist of two parts: (1) A model of the payout for each
machine, and (2) A strategy to try to maximize our winnings, even with imperfect knowledge
of the payouts.

We will construct a computer model to help us implement the n−armed bandits, and to
try out different strategies.

Before going much further, let’s set up some notation: Let

Q(a) = The expected return for playing slot machine a

You can also think of Q(a) as the mean of the payoffs for slot machine a. If we knew Q(a) for
each machine a, our strategy would be very simple: Play the machine with the largest payoff,
and ignore the others. Of course, we do not know the exact payout for each machine, so we
define:

Qt(a) = Our estimation of Q(a) at time t

Our general algorithm should be set up so that our estimates get better over time;

lim
t→∞Qt(a) = Q(a) (1)

One straightforward method of proceeding is to define Q0(a) = 0 for every machine a.
If we play slot machine a a total of na times with payoffs r1, . . . , rna (note that these values
could be negative!), then we estimate Q(a) as the mean of these values:

Qt(a) =
r1 + r2 + . . . + rna

na

In statistical terms, we are using the sample mean to estimate the actual mean (if such a thing
exists in this case).

Strategies for the n−armed bandit

In this section, we’ll describe different strategies one might take to learn Q(a) while at the
same time trying to optimize our winnings.

The Greedy Algorithm

This strategy is straightforward: Always play the slot machine with the largest (estimated)
payoff. If at+1 is the machine we’ll play at time t + 1, then:

at+1 = arg max {Qt(1), Qt(2), . . . , Qt(n)}

where “arg” refers to the argument of the maximum (which is an integer from 1 to n corre-
sponding to the max) . If there is a tie, then choose one of them at random. For example, if

3

we have three machines, and Q1(1) = 1.5, Q1(2) = −0.75 and Q1(3) = 1.6, then a2 = 3 (the
machine we’ll play at the second iteration) will be 3).

Let’s take a moment to see how we might do this in Matlab. The find command will be
used to find the maximum values:

idx=find(x==max(x))

will return all indices of the vector x that are equal to the max. We’ll talk about the double
equality in class. You should try this command with something like:

x=[1 2 3 0 3];

idx=find(x==max(x));

and the result will be a vector, idx, will contain the values 3 and 5.
Going back to the original strategy, I think you’ll see a problem- What if the estimations

are wrong? Then its very possible that you’ll get stuck on a suboptimal machine. This
problem can be dealt with in the following way: Every once in a while, try out the other
machines to see what you get. This is what we’ll do in the next section.

The ε−Greedy Algorithm

In this algorithm we will choose, with probability ε, a machine totally at random. In this case,
as the number of trials gets larger and larger, na → ∞ for all machines a, and so we will be
guaranteed convergence to the proper estimates of Q(a) for all a machines. On the flip side,
because we’re always investigating other machines every once in a while, we’ll never maximize
our returns.

Programming Notes

To program in the ε−greedy algorithm, we will be repeating a certain set of commands over
and over again. That is, we will (1) Choose a machine, (2) Get a “reward”. To write a
program to do this, we use a “for-loop”. The easiest way to see how a for-loop works is to try
out some examples:

Temp=0;

for j=1:5

Temp=Temp+j;

end

As Matlab works through these commands, initially the variable Temp is set to zero. Once we
get to the for-loop, Matlab will set j = 1 and execute the commands it sees until the end line
(and then it will repeat). Therefore, Matlab will do the following:

• Temp= 0, set j = 1, take 0 + 1 and assign the result back to Temp.

• Now set j = 2, take (0 + 1) + 2, and assign the result back to Temp.

• Now set j = 3, and assign Temp= 3 + 3.

• Set j = 4, and Temp= 6 + 4

4

• Set j = 5 and Temp= 10 + 5

• Loop is finished.

For us, we will use “pseudo-code” to give an English-like explanation of our for-loop. We
will execute the loop for some set number of trials, and:

for j=1 to Number of Trials

• Select an action:

– Sometimes choose machine ’a’ at random

– Otherwise, select machine ’a’ with greatest return. Check for ties, and

if there is a tie, pick on of them at random.

• Get your payoff

• Update the estimates Q

The first programming problem will be to decide on how to sometimes select a machine at
random, and sometimes not. If ε =E is the probability of this event, and N is the number of
trials, then one way of selection is to set up an N−vector, greedy, that will “flag” the events-
that is, on trial j, if greedy(j)= 1, choose a machine at random. Otherwise, choose using
the greedy method. The following code will do just that (N is the number of trials)

greedy=zeros(1,N);
if E>0

m=round(E*N); %Total number of times we should choose at random
greedy(1:m)=ones(1,m);
m=randperm(N); %Randomly permute the vector indices
greedy=greedy(m);
clear m

end

Let’s try this out to see if it works the way we think it will. Suppose we have N = 10
trials, and E = 0.3. Then initially we have a vector of 10 zeros. The value of m is 3, so we
put a “1” in the first three positions of the “greedy” vector. Lastly, randomly permute these
positions.

And here’s the full function. We assume that the actual rewards for each of the bandits is
given in the vector Aq, and that when machine a is played, the sample reward will be chosen
from a normal distribution with unit variance and mean Aq(a).

function [As,Q,R]=banditE(N,Aq,E)
%FUNCTION [As,Q,R]=banditE(N,Aq,E)
% Performs the N-armed bandit example using epsilon-greedy
% strategy.
% Inputs:
% N=number of trials total
% Aq=Actual rewards for each bandit (these are the mean rewards)
% E=epsilon for epsilon-greedy algorithm
% Outputs:
% As=Action selected on trial j, j=1:N

5

% Q are the reward estimates
% R is N x 1, reward at step j, j=1:N

numbandits=length(Aq); %Number of Bandits
ActNum=zeros(numbandits,1); %Keep a running sum of the number of times

% each action is selected.
ActVal=zeros(numbandits,1); %Keep a running sum of the total reward

% obtained for each action.
Q=zeros(1,numbandits); %Current reward estimates
As=zeros(N,1); %Storage for action
R=zeros(N,1); %Storage for averaging reward

%***
% Set up a flag so we know when to choose at random (using epsilon)
%***
greedy=zeros(1,N);
if E>0

m=round(E*N); %Total number of times we should choose at random
greedy(1:m)=ones(1,m);
m=randperm(N);
greedy=greedy(m);
clear m

end
if E>=1

error(’The epsilon should be between 0 and 1\n’);
end
%**
%
% Now we’re ready for the main loop
%**
for j=1:N

%STEP ONE: SELECT AN ACTION (cQ) , GET THE REWARD (cR) !
if greedy(j)>0

cQ=ceil(rand*numbandits);
cR=randn+Aq(cQ);

else
[val,idx]=find(Q==max(Q));
m=ceil(rand*length(idx)); %Choose a max at random
cQ=idx(m);
cR=randn+Aq(cQ);

end
R(j)=cR;

%UPDATE FOR NEXT GO AROUND!
As(j)=cQ;
ActNum(cQ)=ActNum(cQ)+1;
ActVal(cQ)=ActVal(cQ)+cR;
Q(cQ)=ActVal(cQ)/ActNum(cQ);

end

6

Next we’ll create a test bed for the routine. We will call the program 2,000 times, and
each call will consist of 1,000 plays. We will set the number of bandits to 10, and change the
value of ε from 0 to 0.01 to 0.1, and see what the average reward per play is over the 1000
plays.

Here’s a script file that we’ll use to call the banditE routine:

Ravg=zeros(1000,1);

E=0.1;

for j=1:2000

m=randn(10,1);

[As,Q,R]=banditE(1000,m,E);

Ravg=Ravg+R;

if mod(j,10)==0

fprintf(’On iterate %d\n’,j);

end

end

Ravg=Ravg./2000;

plot(Ravg);

The output of the algorithms are shown in Figure 1.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

Plays

A
ve

ra
ge

 R
ew

ar
d

ε=0.1

ε=0.01

ε=0

Figure 1: Results of the testbed on the 10-armed bandit. Shown are the rewards given per
play, averaged over 2000 trials.

The Softmax Action Selection

In the Softmax action selection algorithm, the idea is to construct a set of probabilities. This
set will have the properties that:

7

• The machine (or arm) giving the highest estimated payoff will have the highest proba-
bility.

• We will choose a machine using the probabilities. For example, if the probabilities are
0.5, 0.3, 0.2 for machines 1, 2, 3 respectively, then machine 1 would be chosen 50% of the
time, machine 2 would be chosen 30% of the time, and the last machine 20% of the time.

Therefore, this algorithm will maintain an exploration of all machines so that we will not get
locked onto a suboptimal machine.

Now if we have n machines with estimated payoffs recorded as:

Q = [Qt(1), Qt(2), . . . , Qt(n)]

we want to construct n probabilities,

P = [Pt(1), Pt(2), . . . , Pt(n)]

The requirements for this transformation are:

1. Pt(k) ≥ 0 for k = 1, 2, . . . (because all probabilities are positive). Another way to say
this is to say that the range of the transformation is nonnegative.

2. If Qt(a) < Qt(b), then Pt(a) < Pt(b). That is, the transformation must be strictly
increasing for all domain values.

3. Finally, the sum of the probabilities must be 1.

A function that satisfies requirements 1 and 2 is the exponential function. It’s range is
nonnegative. It maps large negative values (large negative payoffs) to near zero probability,
and it is strictly increasing. Up to this point, the transformation is:

P̂t(k) = eQt(k)

We need the probabilities to sum to 1, so we normalize the P̂t(k):

Pt(k) =
P̂t(k)

P̂t(1) + P̂t(2) + . . . + P̂t(n)
=

exp(Qt(k))∑n
j=1 exp(Qt(j))

This is a popular technique worth remembering- We have what is called a Gibbs (or Boltz-
mann) distribution. We could stop at this point, but it is convenient to introduce a control
parameter τ (sometimes this is referred to as the temperature of the distribution). Our final
version of the transformation is given as:

Pt(k) =
exp

(
Qt(k)

τ

)

∑n
j=1 exp

(
Qt(j)

τ

)

EXERCISE: Suppose we have two probabilities, P (1) and P (2) (we left off the time index
since it won’t matter in this problem). Furthermore, suppose P (1) > P (2). Compute the
limits of P (1) and P (2) as τ goes to zero. Compute the limits as τ goes to infinity (Hint on

8

this part: Use the definition, and divide numerator and denominator by exp(Q(1)/τ) before
taking the limit).

What we find from the previous exercise is that the effect of large τ (hot temperatures)
makes all the probabilities about the same (so we would choose a machine almost at random).
The effect of small tau (cold temperatures) makes the probability of choosing the best machine
almost 1 (like the greedy algorithm).

In Matlab, these probabilities are easy to program. Let Q be a vector holding the current
estimates of the returns, as before, and let t= τ , the temperature. Then we construct a vector
of probabilities using the softmax algorithm:

P=exp(Q./t);

P=P./sum(P);

Programming Comments

1. How to select action a with probability p(a)?

We could do what we did before, and create a vector of choices with those probabilities
fixed, but our probabilities change. We can also use the uniform distribution, so that
if x=rand, and x ≤ p(1), use action 1. If p(1) < x ≤ p(1) + p(2), choose action 2. If
p(1) + p(2) < x ≤ p(1) + p(2) + p(3), choose action 3, and so on. There is an easy way
to do this, but it is not optimal (in terms of speed). We introduce two new Matlab
functions, cumsum and histc.

The function cumsum, which means cumulative sum, takes a vector x as input, and
outputs a vector y so that y=cumsum(x) creates:

yk =
k∑

n=1

xn = x1 + x2 + . . . + xk

For example, if x = [1, 2, 3, 4, 5], then cumsum(x) would output [1, 3, 6, 10, 15]

The function histc (for histogram count) has the form: n=histc(x,y), where the vec-
tor y is monotonically increasing. The elements of y form “bins” so that n(k) counts
the number of values in x that fall between the elements y(k) (inclusive) and y(k+1)

(exclusive) in the vector y. Try a particular example, like:

Bins=[0,1,2];

x=[-2, 0.25, 0.75, 1, 1.3, 2];

N=histc(x, Bins);

Bins sets up the desired intervals as [0, 1) and [1, 2) and the last value is set up as its
own interval, 2. Since −2 is outside of all the intervals, it is not counted. The next
two elements of x are inside the first interval, and the next two elements are inside the
second interval. Thus, the output of this code fragment is N = [2, 2, 1].

Now in our particular case, we set up the bin edges (intervals) so that they are the
cumulative sums. We’ll then choose a number between 0 and 1 using the (uniformly)
random number x = rand, and determine what interval it is in. This will be our action
choice:

9

P=[0.3, 0.1, 0.2, 0.4];

BinEdges=[0, cumsum(P)];

x=rand;

Counts=histc(x,BinEdges);

ActionChoice=find(Counts==1);

2. We have to change our parameter τ from some initial value τinit (big, so that machines
are chosen almost at random) to some small final value, τfin. There are an infinite
number of ways of doing this. For example, a linear change from a value a to a value
b in N steps would be the equation of the line going from the point (1, a) to the point
(N, b).

Exercise: Give a formula for the parameter update, τ in terms of the initial value, τinit

and the final value, τfin if we use a linear decrease as t ranges from 1 to N .

A more popular technique is to use the following formula, which we’ll use to update
many parameters. Let the initial value of the parameter be given as a, and the final
value be given as b. Then the parameter p is computed as:

p = a ·
(

b

a

)t/N

(2)

Note that when t = 0, p = a and when t = N , p = b2

“Win-Stay, Lose-Shift” Strategy

In this experiment, we interpret the strategy as: If I’m winning, make the probability of
choosing that action stronger. If I’m losing, make the probability of choosing that action
weaker. This brings us to the class of pursuit methods.

Define a∗ to be the winning machine at the moment, i.e.,

a∗ = max
a

Qt(a)

The idea now is straightforward- Slightly increase the probability of choosing this winning
machine, and correspondingly decrease the probability of choosing the others.

Define the probability of choosing machine a as P (a) (or, if you want to explicitly include
the time index, Pt(a). Then given the winning machine index as a∗, we update the current
probabilities by using a parameter β ∈ [0, 1]:

Pt+1(a
∗) = Pt(a

∗) + β [1− Pt(a
∗)]

and the rest of the probabilities decrease towards zero:

Pt+1(a) = Pt(a) + β [0− Pt(a)]

2In the C/C++ programming language, indices always start with zero, and this is leftover in this update
rule. This is not a big issue, and the reader can make the appropriate change to starting with t = 1 if desired.

10

Exercises with the Pursuit Strategy

1. Suppose we have three probabilities, P1, P2, P3, and P1 is the unique maximum. Show
that, for any β > 0, the updated values still sum to 1.

2. Using the same values as before, show that, for any β > 0, the updated values will stay
between 0 and 1- that is, If 0 ≤ Pi ≤ 1 for all i before the update, then after the update,
0 ≤ Pi ≤ 1.

3. Here is one way to deal with a tie (show that the updated values still sum to 1): If there
are k machines with a maximum, update each via:

Pt+1 = (1− β) ∗ Pt + β/k

4. Suppose that for some fixed j, Pj is always a loser (never a max). Show that the update
rule guarantees that Pj → 0 as t →∞. HINT: Show that Pj(t) = (1− β)tPj(0)

5. Suppose that for some fixed j, Pj is always a winner (with no ties). Show that the
update rule guarantees that Pj → 1 as t →∞.

Matlab Functions softmax and winstay

Here are functions that will yield the softmax and win-stay, lose-shift strategies. Below each
is a driver. Read through them carefully so that you understand what each does. We’ll then
ask you to put these into Matlab and comment on what you see.

function a=softmax(EstQ,tau)

% FUNCTION a=softmax(EstQ, tau)

% Input: Estimated payoff values in EstQ (size 1 x N,

% where N is the number of machines

% tau - "temperature": High values- the probs are all

% close to equal; Low values, becomes "greedy"

% Output: The machine that we should play (a number between 1 and N)

if tau==0

fprintf(’Error in the SoftMax program-\n’);

fprintf(’Tau must be greater than zero\n’);

a=0;

return

end

Temp=exp(EstQ./tau);

S1=sum(Temp);

Probs=Temp./S1; %These are the probabilities we’ll use

%Select a machine using the probabilities we just computed.

x=rand;

TotalBins=histc(x,[0,cumsum(Probs)’]);

a=find(TotalBins==1);

11

Here is a driver for the softmax algorithm. Note the implementation details (e.g., how the
“actual” payoffs are calculated, and what the initial and final parameter values are):

%Script file to run the N-armed bandit using the softmax strategy

%Initializations are Here:

NumMachines=10;

ActQ=randn(NumMachines,1); %10 machines

NumPlay=1000; %Play 100 times

Initialtau=10; %Initial tau ("High in beginning")

Endingtau=0.5;

tau=10;

NumPlayed=zeros(NumMachines,1); %Keep a running sum of the number

% of times each action is selected

ValPlayed=zeros(NumMachines,1); %Keep a running sum of the total

% reward for each action

EstQ=zeros(NumMachines,1);

PayoffHistory=zeros(NumPlay,1); %Keep a record of our payoffs

for i=1:NumPlay

%Pick a machine to play:

a=softmax(EstQ,tau);

%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

PayoffHistory(i)=Payoff;

tau=Initialtau*(Endingtau/Initialtau)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Here is the function implementing the pursuit strategy (or “Win-Stay, Lose-Shift”).

function [a, P]=winstay(EstQ,P,beta)

% function [a,P]=winstay(EstQ,P,beta)

% Input: EstQ, Estimated values of the payoffs

% P = Probabilities of playing each machine

% beta= parameter to adjust the probabilities, between 0 and 1

% Output: a = Which machine to play

% P = Probabilities for each machine

12

[vals,idx]=max(EstQ);

winner=idx(1); %Index of our "winning" machine

%Update the probabilities. We need to do P(winner) separately.

NumMachines=length(P);

P(winner)=P(winner)+beta*(1-P(winner));

Temp=1:NumMachines;

Temp(winner)=[]; %Temp now holds the indices of all "losers"

P(Temp)=(1-beta)*P(Temp);

%Probabilities are all updated- Choose machine a w/prob P(a)

x=rand;

TotalBins=histc(x,[0,cumsum(P)’]);

a=find(TotalBins==1);

And its corresponding driver is below. Again, be sure to read and understand what each
line of the code does:

%Script file to run the N-armed bandit using pursuit strategy

%Initializations

NumMachines=10;

ActQ=randn(NumMachines,1);

NumPlay=2000;

Initialbeta=0.01;

Endingbeta=0.001;

beta=Initialbeta;

NumPlayed=zeros(NumMachines,1);

ValPlayed=zeros(NumMachines,1);

EstQ=zeros(NumMachines,1);

Probs=(1/NumMachines)*ones(10,1);

for i=1:NumPlay

%Pick a machine to play:

[a,Probs]=winstay(EstQ,Probs,beta);

%Play the machine and update EstQ, tau

Payoff=randn+ActQ(a);

NumPlayed(a)=NumPlayed(a)+1;

ValPlayed(a)=ValPlayed(a)+Payoff;

EstQ(a)=ValPlayed(a)/NumPlayed(a);

beta=Initialbeta*(Endingbeta/Initialbeta)^(i/NumPlay);

end

[v,winningmachine]=max(ActQ);

winningmachine

13

NumPlayed

plot(1:10,ActQ,’k’,1:10,EstQ,’r’)

Homework: Implement these 4 pieces of code into Matlab, and comment on the per-
formance of each. You might try changing the initial and final values of the parameters to
see if the algorithms are stable to these changes. As you form your comments, recall our two
competing goals for these algorithms:

• Estimate the values of the actual payoffs (more accurately, the mean payout for each
machine).

• Maximize our rewards!

A Summary of Reinforcement Learning

We looked in depth at a basic problem of unsupervised learning- That of trying to find the best
winning slot machine in a bank of many. This problem was unsupervised because, although
we got rewards or punishments by winning or losing money, we did not know at the beginning
of the problem what those payoffs would be. That is, there was no expert available to tell
us if we were doing something correctly or not, we had to infer correct behavior from directly
playing the machines¿

We also saw that to solve this problem, we had to do a lot of trial and error learning-
that’s typical in unsupervised learning. Because an expert is not there to tell us the operating
parameters, we have to explore and find them out for ourselves.

We learned some techniques for translating learning theory into mathematics, and in the
process, we learned some commands in Matlab. At this stage, you should be able to read
some Matlab code and interpret the output of an algorithm. Later on, we’ll give you more
opportunities to produce your own pieces of code.

In summary, we looked at the greedy algorithm, the ε−greedy algorithm, the softmax
strategy, and the pursuit strategy. You might consider how closely (if at all) these algorithms
would reproduce human or animal behavior if given the same task.

14

