HW 2 Solutions

Math 472, Spring 2011

The homework was to work out exercises 1-5 in the second handout. This included more on Matlab, but was essentially a handout on the Case Study: Reinforcement Learning (available on the class website).

1. What is the Matlab command to create the array x which holds the integers: $2, 5, 8, \dots 89$?

x=2:3:89;

2. What is the Matlab command to zero out the even numbered indices? SOLUTION: There are various ways of doing this. For example:

x(2:2:88) = zeros(1,44);

- 3. (This was actually exercise 8 from the handout by Sauer) Will 1 + x > 1?
 - (a) If $x = 2^{-53}$, then the normalized floating point form (before rounding) for 1 + x is:

$$1.000 \cdots 000 \ 1000 \cdots \times 2^{0}$$

This is the exceptional case- To make bit 52 zero, simply truncate. Therefore, in this case, "1 + x = 1" (in floating point form).

(b) If we add 2^{-60} , we note that the only change is in the rounding rule. We are not in the exceptional case anymore, so round up to get:

$$fl(1+x) = 1.000 \cdots 001 \times 2^0$$

And now "1 + x > 1".

- (c) Given a matrix A, the line: R=sqrt(sum(A.*A)) produces a row of numbers, where each value is the norm of the corresponding column of A.
- (d) The first part of this is the activity. For the second part, in Matlab you should get:

```
>> help banditE
FUNCTION [As,Q,R]=banditE(N,Aq,E)
   Performs the N-armed bandit example using epsilon-greedy
    strategy.
   Inputs:
        N=number of trials total
etc
```

These are the comments we typed into the function file.