Summary so far

We have been looking at using linear models to do our modeling. So far, we have looked at:

- The line of best fit (using the normal equations)
- Linear functions of best fit (linear in the parameters)
- Linear functions of the general form:

$$\mathbf{y} = W\mathbf{x} + \mathbf{b}$$

where the data points \mathbf{x} , \mathbf{y} are known, and the matrix W and vector \mathbf{b} are the unknowns. There are two ways of solving for the unknowns:

- Batch training: Solve using least-squares error: $E = \sum_{k=1}^{p} ||\mathbf{t}_k - \mathbf{y}_k||^2$ where \mathbf{t}_i is the *desired* image of \mathbf{x}_i , and \mathbf{y}_i is the image: $\mathbf{y}_i = W\mathbf{x}_i + \mathbf{b}$.

In Matlab, we'll need to first change $W\mathbf{x} + \mathbf{b}$ to $\hat{W}\hat{\mathbf{x}}$ before solving using the slash command.

- Online training: In this case, we approximate the least-squares solution by updating the weights and biases a small amount for each pair \mathbf{x}_i , \mathbf{t}_i presented. This requires running through all of the data multiple times in order to get a good set of W, **b**.

General Affine Maps

(

We saw that mappings of the form $\mathbf{y} = W\mathbf{x} + \mathbf{b}$ actually have a biological basis- the so-called "linear neural network". Under very simple assumptions, a neural network implements the affine map by physiologically determining weights W and biases \mathbf{b} to give a desired input-output relationship¹.

From a biological viewpoint, we began with Hebb's rule (below, left)- Mathematically, it has shortcomings, and these led us to the Widrow-Hoff algorithm (below, right).

Hebb's Rule
Does not use target values)

$$W^{\text{new}} = W^{\text{old}} + \alpha \mathbf{y}_i \mathbf{x}_i^T$$

 $W^{\text{new}} = W^{\text{old}} + \alpha (\mathbf{t}_i - \mathbf{y}_i) \mathbf{x}_i^T$
 $W^{\text{new}} = W^{\text{old}} + \alpha (\mathbf{t}_i - \mathbf{y}_i) \mathbf{x}_i^T$

In these equations, we assume \mathbf{t}_i are the **desired** outputs of our function, and \mathbf{y}_i are the actual outputs, $\mathbf{y}_i = W\mathbf{x}_i + \mathbf{b}$.

¹Actually, this statement is false. Why? (Hint: Do we expect all of our data to lie on a line or plane?)

Matlab Details

• For batch training, if we have p input vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_p$ where each vector is in \mathbb{R}^n , and p desired output vectors, $\mathbf{t}_1, \ldots, \mathbf{t}_p$ in \mathbb{R}^m , then we form matrices.

The data matrix can be either $p \times n$ (each vector is a row) or $n \times p$ (each vector is a column), and similarly, the output data can be in rows or columns- It doesn't matter which way you do it, but try to be consistent.

Example from the class notes (bottom of p. 10): We have 4 vectors in \mathbb{R}^2 for input and 4 vectors in \mathbb{R}^1 for output. To complicate matters, for the batch training we need to form \hat{W} and \hat{X} rather than W and \mathbf{b} . In the Matlab script file, \hat{X} is constructed as a 3×4 matrix and our outputs Y are 1×4 . When Matlab solves the system:

$$\hat{W}\hat{X} = Y$$

then $\hat{W} = [W|b]$. That is, W=Y/X produces a 1 × 3 matrix \hat{W} , and our model is:

$$W(1)x_1 + W(2)x_2 + W(3) = y$$

• For online training (in the homework), we want to use wid_hoff1.m. The help file says that X must be input as "number of points by dimension", which means the data is in rows. Similarly, the desired output should also have size "number of points by dimension", or 4×1 .

Once this W and b are created, W should be 1×2 and b should be a scalar.

• For the problem on p. 10, since y = 0 is exactly between the two other outputs of -1, 1, we plot the line $W\mathbf{x} + \mathbf{b} = 0$, which is what you are looking at in the graph.

Homework from p. 13

Some details are missing from this exercise: The inputs are 8 vectors in \mathbb{R}^2 . Each pair belongs to a different class, so there are 4 classes. The outputs are also vectors in \mathbb{R}^2 (as in the notes).

The inputs to wid_hoff1.m are data arrays that should be 8×2 (rather than 2×8 as in the notes).

Your goal in this problem is to look at how changing the parameters lr, iters changes the output- W in this case is 2×2 and **b** is 2×1 . The model equation is:

$\begin{bmatrix} w_{11} \end{bmatrix}$	w_{12}	$\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{bmatrix} b_1 \end{bmatrix}$	_	y_1
$\lfloor w_{21}$	w_{22}	$\begin{bmatrix} x_2 \end{bmatrix}$	$\begin{bmatrix} b_2 \end{bmatrix}$		y_2

Therefore, we have two lines representing boundaries:

$$w_{11}x_1 + w_{12}x_2 + b_1 = 0$$

$$w_{21}x_2 + w_{22}x_2 + b_2 = 0$$

One way to see if you have a "good" W and **b** would be to plot these lines together with the input array (see the code on pg. 12 to help).