
Summary so far

We have been looking at using linear models to do our modeling. So far, we have looked at:

• The line of best fit (using the normal equations)

• Linear functions of best fit (linear in the parameters)

• Linear functions of the general form:

y = Wx + b

where the data points x, y are known, and the matrix W and vector b are the unknowns.
There are two ways of solving for the unknowns:

– Batch training: Solve using least-squares error: E =
∑p

k=1 ‖tk − yk‖2 where ti is
the desired image of xi, and yi is the image: yi = Wxi + b.

In Matlab, we’ll need to first change Wx + b to Ŵ x̂ before solving using the slash
command.

– Online training: In this case, we approximate the least-squares solution by updating
the weights and biases a small amount for each pair xi, ti presented. This requires
running through all of the data multiple times in order to get a good set of W , b.

General Affine Maps

We saw that mappings of the form y = Wx + b actually have a biological basis- the so-called
“linear neural network”. Under very simple assumptions, a neural network implements the
affine map by physiologically determining weights W and biases b to give a desired input-
output relationship1.

From a biological viewpoint, we began with Hebb’s rule (below, left)- Mathematically, it
has shortcomings, and these led us to the Widrow-Hoff algorithm (below, right).

Hebb’s Rule
(Does not use target values)

Widrow-Hoff

⇒
W new = W old + αyix

T
i W new = W old + α (ti − yi) xT

i

In these equations, we assume ti are the desired outputs of our function, and yi are the
actual outputs, yi = Wxi + b.

1Actually, this statement is false. Why? (Hint: Do we expect all of our data to lie on a line or plane?)

1



Matlab Details

• For batch training, if we have p input vectors x1,x2, . . . ,xp where each vector is in IRn,
and p desired output vectors, t1, . . . , tp in IRm, then we form matrices.

The data matrix can be either p × n (each vector is a row) or n × p (each vector is a
column), and similarly, the output data can be in rows or columns- It doesn’t matter
which way you do it, but try to be consistent.

Example from the class notes (bottom of p. 10): We have 4 vectors in IR2 for input and
4 vectors in IR1 for output. To complicate matters, for the batch training we need to
form Ŵ and X̂ rather than W and b. In the Matlab script file, X̂ is constructed as a
3× 4 matrix and our outputs Y are 1× 4. When Matlab solves the system:

Ŵ X̂ = Y

then Ŵ = [W |b]. That is, W=Y/X produces a 1× 3 matrix Ŵ , and our model is:

W (1)x1 +W (2)x2 +W (3) = y

• For online training (in the homework), we want to use wid_hoff1.m. The help file
says that X must be input as “number of points by dimension”, which means the data
is in rows. Similarly, the desired output should also have size “number of points by
dimension”, or 4× 1.

Once this W and b are created, W should be 1× 2 and b should be a scalar.

• For the problem on p. 10, since y = 0 is exactly between the two other outputs of −1, 1,
we plot the line Wx + b = 0, which is what you are looking at in the graph.

Homework from p. 13

Some details are missing from this exercise: The inputs are 8 vectors in IR2. Each pair belongs
to a different class, so there are 4 classes. The outputs are also vectors in IR2 (as in the notes).

The inputs to wid_hoff1.m are data arrays that should be 8× 2 (rather than 2× 8 as in
the notes).

Your goal in this problem is to look at how changing the parameters lr, iters changes
the output- W in this case is 2× 2 and b is 2× 1. The model equation is:[

w11 w12

w21 w22

] [
x1

x2

] [
b1
b2

]
=

[
y1

y2

]

Therefore, we have two lines representing boundaries:

w11x1 + w12x2 + b1 = 0
w21x2 + w22x2 + b2 = 0

One way to see if you have a “good” W and b would be to plot these lines together with the
input array (see the code on pg. 12 to help).

2


