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ABSTRACT

In this paper, we outline the relationship between the Maxi-
mum Noise Fraction (MNF) method–an algorithm first pro-
posed for cleaning noise from multispectral image data–
and Blind Signal Separation (BSS). In particular we demon-
strate under what conditions these methods are equivalent
and indicate that MNF may be viewed as an extension to
BSS for the case of subspace mixing. We present several
examples and compare the results of the MNF method to
algorithms for performing independent component analysis
(ICA).

1. INTRODUCTION

Under some basic assumptions, we show that the method
known as Maximum Noise Fraction (MNF) reduction per-
forms a separation of signals into separate sources, or more
specifically, independent components. In addition, we show
that a second order algorithm for Blind Signal Separation
(BSS) is a special case of the MNF method. Thus, we can
also view blind signal separation as a subspace method of
separating signal and noise where the decomposition also
diagonalizes each of the respective subspaces.

MNF was originally developed to denoise multispectral
satellite images [1, 2], and was more recently applied to
multivariate time series [3, 4]. A necessary condition for
a solution to the MNF variational problem may be formu-
lated as a generalized eigenvector problem.1 This problem
may be reformulated as a pair of standard eigenvector de-
compositions via a technique referred to as Noise Adjusted
Principal Component Analysis (NAPCA) [5], (also see [6]).
As we shall see, this approach facilitates drawing the con-
nection between BSS and MNF. The solution to the BSS
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1Actually, the problem is a special case of the generalized eigenvector
problem with non-negative definite matrices; hence, it is more properly
viewed as a generalized singular value problem.

using second order statistics is well known [7, 8], but the
connection to MNF is not; in fact, the MNF algorithm itself
does not seem to be widely known.

The purpose of this paper is twofold: We will review
MNF, then show that the variational problem produced will
also yield independent components in the sense that we will
implicitly compute the pseudo-inverse of the mixing ma-
trix. This will be followed by some examples, conclusions
and apparent extensions. We focus on demonstrating the re-
lationship between MNF and BSS with examples and algo-
rithms; due to space limitations, the theoretical details will
appear elsewhere [9].

2. MAXIMUM NOISE FRACTION (MNF)
REDUCTION

The MNF algorithm begins with the following setup: Sup-
pose we have a data set

����� ���	��

, with ���� . Suppose

further that: ���������

where
�

is the “signal” matrix,
�

is the noise.2 We also
assume that the signal is orthogonal to the noise in the sense
that

���������
and

��� �����
.

We define the signal to noise ratio as
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Under the assumption that the signal is orthogonal to the
noise, we can write

.0�1�2�1��.
. � � � ��.

� .0� ��� �/.
. � � � ��.

��3
(2)

Thus, the equation
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2Alternatively, we could view 4 more generally as being the sum of
two signal matrices.
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is an equivalent form of Equation (1) and leads to the gen-
eralized eigenvector problem

� � ��. � � � � ��.

See [10] for details concerning this derivation.
In many situations the covariance matrix of the noise is

available. If not, it may be estimated by first computing the
covariance of the differences (see [2, 3] for more details). If
we define the � th row of the matrix � � as the difference of
the � th and � ��3

rows of the matrix
�

� ��� ���	� 
 �#��� ���	� 
�� ��� � ��3 �	� 
�
then we may make the approximation, i.e.,

����� � � � 
�� ����� � � 

This may shown to be accurate as long as the signal is smooth.

Thus the resulting optimization problem is given by the
generalized eigenvector problem:

� � ��. � � � � � � ��.

The NAPCA algorithm to solve the MNF variational prob-
lem is summarized in the following:

1. Take the eigenvector expansion of the covariance of
� � :

� � � � ������������ � ��
where the elements of

���
are decreasing.

2. Whiten the original data:
����������	�� ��

3. Compute the eigenvector expansion of the covariance
of
��

: �� � �����!��	� �� ! ��
4. Define " �������� �� ! ��
5. Compute the maximum noise fraction basis vectors

via # �#� "
Note that the signal-to-noise ratios are given by

��.�$&%'��.'$
,

� � 3 �	(	(	()� � . Thus, this method then gives a natural order-
ing of the basis vectors.

3. SECOND ORDER BLIND SIGNAL SEPARATION
(BSS)

Let �����'*
(4)

where
�

are the original, independent, signals in
� � �	��


, and* � � � 
 ��

is the full rank mixing matrix.

We show that applying the MNF algorithm to this set
is equivalent to computing the pseudo-inverse of

*
. That

is, if we define the SVD of
* �+!�,��-,.� �,

, then
*0/ �

�1,2�  �, ! �,
.

As before, we define � ��� ���	� 
 � ��� ���	� 
'� ��� � � 3 �	� 
 ,
� �3� ���	� 
 ���3� ���	� 
�� �3� � ��3 �	� 
 . Now we begin:

1. � �2� � � �4* � � ��� � �'* , and with the scaling as-
sumption that � � � � ���65

, we have that:

� � � � ���6* � *��6�1,2���, � �,

2. Whiten the data:
����#���1,.�  �, � ��!�,��-,.� �, �1,.�  �, � ��!�,

3. Perform the second eigenvector expansion:
�� � ����7! �, � � ��!�, �7! �,38-9 !�,

4. Finally, we compute the separation

�������1,.�  �, ! �,

In the final step of the algorithm above we have employed
the assumption that

� � ��� 8-9;:�6<�5
.

4. CONNECTING MNF AND BSS

It is apparent from the algorithms of the previous two sec-
tions that MNF and BSS are equivalent (under our restricted
assumptions) in the sense the signal matrix and the matrix
of maximum noise fraction vectors are the same, i.e.,

��� #

This arises from the fact that the mixing matrix is the psuedo-
inverse of the generalized eigenvector matrix, i.e.,

* � ">=
given

!�� �7!�,
and

��� ���1,
as a result of the construction.

In fact, the connection between BSS and MNF can be
made stronger by the Generalized Singular Value Decom-
position (GSVD) (see, for example, [11]). It can be shown
that [9], if

��� �����
with

� � ����� � �����
, then there

exists orthogonal matrices
! � � , diagonal matrices

��? � ��@
and a matrix

*
so that:

�������BA !C�-?D�E��@�FG*

Compare this with the BSS model, Equation 4. The MNF
model can be translated directly to a signal separation model.
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On the other hand, we can formulate the BSS as an
MNF problem by writing out the matrix product. Let

� �
A ��� �	(	(	(	� � 
 F so that

��$��2� � �	� �
. Let

* � A �	� � �	(	(	()� �	�
 F � so
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. Then:
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�
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where each
�G$�� $ � � � �	��


. By the assumption of indepen-
dence, we can group this sum in any manner. Therefore,
the MNF solution will, by definition, need to compute the
pseudo-inverse of

*
, as the specific grouping to be made is

not specified by the model.
Furthermore, this connection of the MNF to the BSS

permits a variational formulation to the BSS problem as

. ��$���� "%$'&?
	 @ * @�	 ? *,+
- �� -
- ��� -

where
�

and
�

are assumed fixed.

5. EXAMPLES

Here we examine the above results with a synthetic data
example as well as a speech data example. We will be com-
paring the results of the MNF method to two popular tech-
niques: FastICA [12] and JADE [13]. Due to the limited
length of this note, we will not discuss the details of these
algorithms here, but we do note that JADE is comparable to
the MNF algorithm in that JADE solves the BSS problem by
a joint diagonalization of correlation matrices (versus MNF,
which uses a single matrix).

Synthetic Data

This example was taken from the Matlab implementation
of FastICA [12] available on the web3. Figure 1 shows the
original, unmixed signals. Figure 2 shows the mixed signals
presented to the MNF method, and the FastICA method.
Figure 3 shows the result of using the MNF method (Steps
1-4 in Section 3), with the ordering given by the signal to
noise ratios in Equation 2, and the results using FastICA are
given in Figure 4. The parameters were set at the program
defaults, using the “deflation” method and a cubic nonlin-
earity. The outputs of the algorithms are very similar.

TIMIT Example

The following mixture of signals was taken from the TIMIT
[14] database. Two samples were taken of the same sen-
tence (different speakers): “She had your dark suit in greasy
wash water all year”. The time series were truncated to have

3http://www.cis.hut.fi/projects/ica/fastica/
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Fig. 1. The four original signals. This is the synthetic data
for the first example, each of the four signals has 500 time
ordered samples.
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Fig. 2. The mixture of signals for presentation to the BSS
algorithms.
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Fig. 3. The output of the MNF algorithm applied to the data
in Figure 2.
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Fig. 4. The output of the FastICA algorithm applied to the
data in Figure 2.
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Fig. 5. A linear mixture of two voice samples (the same
sentence is read by two different speakers).

equal length (no actual speech was deleted). A ����� mixing
matrix was selected with elements randomly chosen from a
normal distribution. The signals were mixed using this ma-
trix, and the plot in Figure 5 shows the resulting scatter plot.
In this case, the mixing matrix was arbitrarily selected to be

*���� 3 ( � 3��	� � � ( �
�
� 33 ( � � �� � � ( ��	�
���
The covariance matrices described in Sections 2 and 3 are

given in Table 1. Here we show the eigenvectors
!

and
eigenvalues

8
, and only list the nonzero eigenvalues. In the

first set, we consider the data as modeled by
�����

, and in
the second set, we consider the data modeled by

�'*
, where*

is the mixing matrix given previously. From the data in
Table 1. it is evident that the signal

�
and the noise

�
are

not exactly orthogonal. We also see that
� � �

is close to
diagonal, but � � � � � is fairly far from diagonal. It is of sig-
nificant interest that the fact that some of the basic assump-
tions held only approximately essentially did not impact to
any significant degree the similarity of the MNF and BSS
solutions indicating that these algorithms are rather robust
to perturbations.

The MNF was able to separate the signals, with the re-
sult shown in Figure 6. Similar results were found using
FastICA [12] and JADE [13], where the outputs were com-
pared to the original signal by computing the correlation co-
efficients. All yielded coefficients of either � 3 .

In Table 2, we compared the explicit computation of
the the mixing matrix

*
found by each method. To per-

form a valid comparison amongst methods, we examine the
SVD of the output of each, and disregard the singular val-
ues, since the scaling is arbitrary in the BSS problem. The
middle column lists the left singular vectors, the last column
lists the right singular vectors. In all cases, the algorithms
output comparable results.
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Table 1. Computation of covariance matrices of interest.
The first three correspond to the MNF model:

��� � ���
,

and the second set of two correspond to the BSS model:��� �'*

Method Left Vectors
!

Right Vectors
�

Orig
� ( �
�	� �;( � �	�
( � �	� ( �
�	� � � ( � � � �;( �	� �

( �	� � ( � � � �
MNF

� ( �
� � �;( � �	�
( � �	� ( �
� � � � ( �
�	� �;( � �	�

�;( � �	� �;( �
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� � ( � � �
�;( � � � �;( �
� ��� � ( � � � �;( �
� �

( �
� � ( � � � �
JADE

� ( �
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�;( � �	� �;( �
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Table 2. The left and right singular vectors of the mixing
matrix, rounded to three digits. The first row was the origi-
nal, the second row was produced by the MNF method, the
third row was produced by FastICA, and the last row was
produced by JADE. As we can see, all three methods pro-
duced comparable results.
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Fig. 6. The linear mixture from Figure 5, now separated
through maximum noise fraction reduction.

6. CONCLUSIONS

We have reviewed the MNF technique, and have shown, by
construction, that under some basic assumptions, the vari-
ational problem also produces independent components in
the sense that we compute the pseudo-inverse of the mixing
matrix. We have also shown several examples, comparing
the output with some other popular ICA algorithms. In fact,
we have compared many examples between algorithms, and
have found that when MNF succeeds at separation, so does
FastICA and JADE; when MNF fails to separate, so does
FastICA and JADE. This comparison will need a more de-
tailed examination in future work, but the comparison be-
comes somewhat clouded by the myriad of parameters that
FastICA can implement.
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