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Abstract

We present two extensions of the algorithm by Broomhead
et al [2] which is based on the idea that singular values that
scale linearly with the radius of the data ball can be exploited
to develop algorithms for computing topological dimension
and for detecting whether data models based on manifolds
are appropriate. We present a geometric scaling property
and dimensionality criterion that permit the automated
application of the algorithm as well as a significant reduction
in computational expense. For irregularly distributed data
this approach can provide a detailed analysis of the structure
of the data including an estimated dimension distribution
function. We present our approach on several data sets.

Keywords: Intrinsic dimension, topological dimen-
sion, local PCA, local KL.

1 Introduction

The estimation of topological, or intrinsic, dimension is
an important first step in data analysis, as it can pro-
vide useful insights into the local geometric structure -
in fact, it can be used to determine if there are “inter-
esting” local regions that may need extra attention.

We approach the topic from a geometric point
of view, in that much of our data comes from high
dimensional systems of differential equations, and so
much of it can be viewed as noise-free. However, the
methods can be applied to data sets that are mildly
contaminated with noise, and we address this issue in
the examples.

In contrast, much of the literature on intrinsic di-
mension comes from a statistical perspective (see for a
sampling, [7, 6, 1, 12, 14]), and while this too provides
one viewpoint, we stress that geometric structure can
be very important- there is an inherent trade-off be-
tween noise reduction versus maintenance of small scale
topological structure, which may in fact be necessary
to preserve some desired properties of the manifold in
the small dimensional representation. In particular, we
don’t see our method as a competitor to statistical tech-
niques, but as an alternative that may provide addi-
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tional insight.

The method of singular value curves was originally
described in [2], and subsequently utilized in [3], and it
is based on the fact that smooth manifolds are locally
linear and are well approximated by a truncated Taylor
expansion. We extend this treatment in two ways.
The first extension is to remove (to some extent) the
dependency of the algorithm to the density of the data
on the manifold, thus making the algorithm amenable
to automation. The second extension is to define the
SV curves not point-wise, but in terms of the density.
This will allow us to use and interpret the SV curves
when the data does not have a well defined manifold.
Finally, we show the utility of these algorithms with
several examples.

2 Local Dimensionality Estimation

The main ingredient to our approach is the notion of
a k-dimensional manifold realized in an n-dimensional
ambient space. By definition, such an object may be
locally represented in terms of k coordinates

Yo : M =N, v="1,(u)

where u € M C R*¥ and v € N c R", and «
is an index of the local region. In terms of local
coordinates, there exists a k-dimensional coordinate
system in which the apparently n-dimensional data may
be represented. Such a parameterization is afforded by
the best linear approximation to the function f which
may be expressed in terms of its Jacobian

df = Df(F)(x — 7)

where (Df(Z)),; = 0f;/0x;. Fukunaga proposed that
the characterization of a local region of the data in
terms of a best linear approximation might be accom-
plished numerically by computing the Karhunen-Loéve
(KL) eigenvalues and eigenvectors (or principal compo-
nents) in a spherical region about the point of inter-
est [7, 6]. In theory, the locally dominant eigenvectors
should span the same linear space as the column space
of the Jacobian. As developed in the next section, this
observation leads naturally to an approach for comput-
ing local bases and, ipso facto, the topological, or local
intrinsic, dimension. In terms of noisy data, the method
will attempt an encapsulation of the data.



3 The Energy Criterion

The local description of a given data matrix F =
[fM, ..., fP)] is initiated by creating a partition in
terms of local regions, or e-balls, i.e., spheres of radius
€ centered at the points {c¢;};**, where n. is the number
of balls in the decomposition. Each ball may be defined
as

Be(ci) ={fP e F: |fV —cil| < ¢}

The number of data points contained in B.(c¢;) will be
denoted by P;.

For a given radius, or a fixed number of points

P;, the eigenvalues and eigenvectors of the ensemble

averaged covariance matrix may be computed to provide
the decomposition

%Bs(ci)TBe(ci) = OADT

3

where now we view the local ball notation to indicate
a matrix whose columns are the points in the ball.
Throughout this paper the balls consist of data that
is assumed to be centered, i.e., f(*) = (f®) — )T we
drop the primed notation for simplicity. Furthermore,
define r; as the rank of the i’th ball. For later algorithms
it will also be convenient to assume that the data is
ordered, i.e., the data is relabeled in terms of increasing
magnitude, i, [V <[ f@] <... <[|FP)].

Fukunaga proposed that the KL-dimension ds of the
i’th ball could be defined as the number of normalized
eigenvalues A; = A;/V; that exceed a fixed percentage
of the total variance V; = Z; Aj. Specifically, define
the KL-dimension using ¢ at center c:

ds = #{\; > 0}

where 0 is the minimum fraction of energy an eigenvalue
must retain for its eigenvector to be counted as spanning
the tangent space. Typically 6 = 0.01, although this
choice is ad hoc. In practice, this number d; is typically
well-defined when the size of the ball is small enough,
yet contains sufficient data to obtain good statistics.

In summary, Fukunaga’s algorithm for determining
the ad-hoc dimension ds proceeds as follows:

Energy Criterion Algorithm

Select the energy level §.

Let € be given by the data cluster centered at c;.

Compute the eigenvalues of the local data set
Bg(Ci).

Determine the KL dimension ds at center c;.

4 The Singular Value Curves

In contrast to Fukunaga’s algorithm which is based on
an ad hoc energy criterion as described in Section 3,
the algorithm proposed by Broomhead et al [2] uses the
scaling of the singular values for objectively determining
the local dimension. This approach has the advantage
that the linear nature of the tangent space is being
directly exploited in the process of its identification.

Given data which resides in a local spherical region
B.(c;) ¢ R", the goal of the scaling criterion is to
determine the dependence of the singular values on
the radius e. We define the (local) SV curve for the
j’'th singular value as o;(e) where € is varied on the
interval (0, €max]; the scaling of which are revealed by
the solution of the eigenvector problem

1

EBe(Ci)TBe (Ci)¢j (6) = 0-]2' (6)¢j(e)

on the interval (0, emax] where {o;,j =1,...,n} are the
n singular values for the matrix of data whose distance
to the center ¢; is less than e, and P, is the number of
points in the B.. The discrete local SV curves 7; are
then represented by the pairs

Ti = {(€,95(¢))

Consider the case of data which is a sampling of a
low dimensional manifold, U with dimension k. In the
local analysis discussed above, the data matrix consists
of rows corresponding to (f*) — ¢;)T, where y is the
index of the data, and c¢; is the i*" center. Therefore, for
sufficiently small ¢, the rows of B(c;) are approximately
tangent vectors to U at ¢;. As € — 0, the rank of B.(¢;)
is the dimension of U at ¢;. As € is increased, the first k
singular values will scale linearly until saturation or the
effects of curvature become noticeable. The remaining
singular values will grow as €2 or faster.

Singular Value (SV) Curves Algorithm
Let i =1 : n., where n. is the number of clusters.

0 0 < €< €maxt

1. Let j =n+1: P;, where P; is the number of points
in cluster i.

2. Denote by B(1 : j,:) the matrix formed by taking
the smallest j center-subtracted data points as the
Jj TOWS.

3. Compute the singular values of %B(l Sy )e

4. The local dimension is the number of SV curves
that scale linearly with the radius of B.

There are two critical observations to make at this
point. The first is that the Fukunaga and Olsen’s al-
gorithm [7] is a special case of the SV Curves- While



the former takes an eigenvalue/eigenvector computation
at a single point, the SV curves algorithm takes mea-
surements along many points. While the former algo-
rithm asks for the dominating eigenvalues at one point,
the SV asks for the relative scaling of the eigenvalues
(or more precisely, the singular values) taken at many
points. Thus, if desired, one can make a detailed anal-
ysis of the structure of the surface.

One difficulty of this algorithm as originally stated
is the last step, as the slope of the linear functions
will be dependent on the density of the data. We
will resolve this problem by putting the curves into
a kind of canonical form. Intuitively, we will force
every (non-zero) singular value of the ball of data, at
maximum radius, to be unity. Numerically, this is
effected via whitening the data [6]. As a reminder of
this method, if X is a matrix of data, and X = UXVT
is its (reduced) singular value decomposition, then the
whitening transformation is given by

Yy=2"'UTX

Note that this has the built-in effect of filtering the
dimensions corresponding to very small singular values.

An important feature of the modified algorithm is
the fact that all the singular values now have the value
o; = 1 when the full local data set (corresponding to
€ = €max) is used. In what follows we take R = €yax. In
view of the fact that R is the maximum distance from a
point in X (assuming it has been mean subtracted) to
the center and that at R the singular values all must be
unity we may make the following observation:

Geometric Scaling Property: The slopes of all
linear scaled singular values must be Ilzv and
the quadratic coefficient must be %.

In other words, for eigenvectors which span the tangent
space, their associated local SV curves must have the
form

(4.1) <

oj(e) = R

Similarly, the region of lowest order curvature of the
function has local SV curves of the form

E2

(1.2) 73(0) =
This standardization greatly facilitates the interpre-

tation of the local SV curves and has an important al-

gorithmic consequence which we now discuss.

The normalized line with y(z) = z/R and a
quadratic ya(x) = 22/R? have greatest deviation at
the midpoint z = R/2. Given y;(R/2) = 1/2 and
y2(R/2) = 1/4 it follows that if o; > 3/8 the line model

is more likely while if o; < 3/8 the quadratic (or higher
order) model is more likely. Thus, in determining which
dimensions are scaling linearly, we need make only a
single computation, at a distance of R/2 from center,
where the distinction between linear and higher order
scaling is the greatest. The decision is thus:

Geometric Scaling Dimensionality Criterion:
If oi(e) > 2 where e = R/2 then eigenvector i
belongs to the span of the tangent plane. The
local dimension is the number singular values
for which this condition is satisfied.

With this criteria, we can automate the process of
dimension estimation when the data represents a well
defined manifold, and we call this the modified SV curve
algorithm. We will now extend the interpretation of
the algorithm in the case that the data is not so well
represented.

5 The Analytic SV Curves

Consider the following definition of the Singular Value
curves:

Let p((x) denote the probability density function
of the projection of  to the i*" coordinate vector. The
corresponding singular value curve, o) (t) is defined as:

¢
/xzp(i)(x)dx
/ P (@) da

—t

(5.3) o@D (t) =

where the coordinate vectors are taken as the KL
eigenvectors. The fact that the two methods are
equivalent can be seen by considering the continuous
version of Karhunen-Loéve!.

Armed with this definition, one may prove the
following:

1. Let = be uniformly distributed on (—a,a). If y =
a™, then the SV curves of y scale linearly with the
radius, t.

2. Let z™ have a uniform distribution. Then the SV
curves of z™ scale proportionally to ¢, where ¢ is
the radius. Note that this is the case where the data
set is a manifold where the data has been uniformly
distributed over the surface.

The added value of Definition 5.3 can be seen in the fact
that one can now experiment with different distributions
and look at the effect on the scalings. For example, one
can consider the signature scalings when the projection

TFor more details on this relationship, see [10].
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Figure 1: The (modified) SV curves for the multivariate
normal data. Here we see a “signature scaling” that
occurs for such data. The independent variable is the
radius of the ball of data, the dependent variables are
the singular values.

gives a normal distribution of data, which we will
consider this further in the next section.

6 Examples

So far we have presented two extensions of the SV
curves. Taken together, we can either perform a straight
dimension estimation with possible automation, or do a
detailed local analysis of the geometry of the surface
in question. First, we will examine some template data
sets in order to better interpret what we see in the more
complicated cases. To begin, we will examine the case
of Gaussian noise, then the surface of a sphere.

6.1 Gaussian Noise The data set in this example
consisted of 1000 points in R?, normally distributed
with zero mean, and standard deviations of 0.4,0.2,0.1
in each coordinate direction respectively.

Figure 1 shows the modified SV curves (modified in
the sense that the data has been whitened). Here we see
the scaling that is typical of a normal distribution- the
curves are scaling at a fractional power less than one,
which is something we should not see on a noise-free
manifold?. We will keep these curves in mind as we will
add normally distributed noise to a manifold below.

6.2 Surface of a Sphere Our second template ex-
ample is given by data on the surface of a sphere, where

?Tn this case, a local Taylor expansion should locally well
approximate the manifold, so that the scalings are in terms of
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Figure 2: The modified SV curves on the unit sphere
with non-uniformly distributed points. The predicted
scalings are shown as solid lines, the computed values
are shown as triangles. The horizontal axis is measuring
the radial length of the ball of data, and the vertical
axis is measuring the singular values. Indeed, this
gives the expected result that the sphere is locally two
dimensional, corresponding to the two linear scalings.

the data is centered at an arbitrary point on the surface.

If the points are distributed uniformly across the
surface, then the dependence of the singular values
as a function of the radial distance € can be shown
analytically to be:

o1(€) = oa(e) = %e +0(é?)

1
V12

In contrast, if the data is not uniformly distributed
across the surface of the sphere, the slopes of the linear
functions will change. This can make the determination
of whether a function is scaling as a linear function of
the radius very difficult. To obtain a canonical form for
the linear/quadratic scalings, we whiten the data first.

In Figure 2, we show the result of computing the
modified SV curves on the unit sphere with non-uniform
data, and see that the predicted values (shown as solid
lines, see Equations 4.1 and 4.2) are very close to the
computed values (shown as triangles).

o3(e) = e+ 0(63)

6.3 The Lorenz Attractor This example comes
from an aged solution to the Lorenz equations,

. 8
:?— —3T + Yz
y= 10(y - 2)
z= 28y—z—uxy



Figure 3: An aged solution to the Lorenz equations.
Dimensionality estimation for this data can be difficult
in the proximity of where the solutions seem to merge
(in the center).

We chose this example because it is somewhat typical
of a difficult problem in dimensionality estimation. The
solution curve is shown in Figure 3, where we see that
the solutions seem to merge (they do not, this is a
fractal). However, there are many regions which can
be embedded to IR?, while some cannot?.

The SV curves for a typical two dimensional cluster
of data are given in Figure 4. Here we see the scalings
predicted, even though the set is not a manifold. Figure
5 shows the result of adding normal noise (with standard
deviation 0.1). The third SV curve is now showing the
signature Gaussian scaling we discussed in Example 6.1.
We show this for illustration purposes, since in practice
this third singular value would have been filtered out.

We also show a typical set of SV curves for a local
set that intersects the middle of the Lorenz data. Here,
the curves initially show two linear scalings, but as the
ball of data intersects more of the center, a third linear
scaling appears.

6.4 Time Sequence of Images This example orig-
inally appeared in J. Bruske and G. Sommer [5]. The
data consists of a movie in which a robot arm was re-
volving a cylinder about a fixed axis. Figure 7 shows
a sample snapshot from the film. There were 360
grayscale snapshots (taken at each 1 degree progres-
sion), with a resolution of 256 x 256 pixels (so the di-
mension of the input space is 65,536). The noise is ap-
proximately Gaussian with a standard deviation of 1.75
gray values per pixel.

SEspecially if one wishes to construct the inverse of the

projection to R2.
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Figure 4: The SV curves for a typical two dimensional
cluster from the Lorenz data. The dotted lines show the
predicted linear and quadratic scalings for the modified
SV curves (See Equations 4.1 and 4.2).
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Figure 5: The same data as that shown in Figure 4, but
with added normal noise (standard deviation 0.1). Here
the third SV curve is shown with the signature Gaussian
scaling. In the algorithm, this third curve would have
been removed- it is shown here for illustrative purposes.
From this picture, we might suspect that we have a local
two dimensional set contaminated with noise.
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Figure 6: A typical set of SV curves for data that
intersects the middle of the Lorenz set. Initially, we
have the two linear scalings, but as the ball of data
begins to encapsulate the center, three linear scalings
appear.

We first performed a global reduction of the data
using KL. The KL spectrum suggests that the data is
three dimensional given three dimensions retain 97.5%
of the total energy.

There are now two ways to proceed. In practice, we
would perform the global reduction to three dimensions
before constructing the SV curves, but for illustration
purposes, we show the result of applying the SV algo-
rithm on the full 65,536 dimensional space.

We took an arbitrary point to be the center of our
cluster, then found the 50 closest points. Since we know
that our dimension is no more than three, we began
the SVD curve algorithm with only 4 points. A typical
set of SV curves are shown in Figure 8. There is one
primary curve that exhibits the linear scaling, and one
curve that has the quadratic scaling. The remaining
singular values are appearing as more and more data
are included, and remain below the third singular value.

We now present the results of using the modified SV
algorithm on the reduced dimensional set. This reduc-
tion is important, because the modified SV algorithm
will be inverting the matrix of singular values. The re-
sult is shown in Figure 9, where again we see that the
numerical scaling and the analytic scaling are matching
quite well. From this we conclude that the topological
dimension is one.

6.5 The Kuramoto-Sivashinsky (KS) Equation
Here is a typical example taken from a PDE simulation.
The PDE under examination here is the Kuramoto-
Sivashinsky equation, and is used to model turbulence

Figure 7: A sample snapshot from the movie of a
cylinder turned by a robot arm.
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Figure 8: The singular value curves for an arbitrary
center of the movie data. On the top are the original SV
curves, where we see one linear scaling, one quadratic
scaling, and the remaining singular values are remaining
quite low.
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Figure 9: The result of the modified SV algorithm,
performed on the reduced dimensional movie data. The
local filtering has removed all but the first two singular
values, and we can clearly see the linear vs. quadratic
scaling.

in waves. Given a high dimensional simulation of
the solution, our goal is to model the solution on the
attracting set in low dimensional space. Thus, we must
find the local dimensionality first. The KS Equation is
given by:

1
Up + Wgggr + (um + 5(%0)2) =0

with a = 87. A simulation was performed using the
Fourier-Galerkin method, retaining 10 complex modes
(so the simulation was running in IR*°) [8, 9]. Global KL
shows that the attracting set is a thin torus embedded
in 20 dimensional space, and the data in the primary
6 dimensions are shown in Figure 10, along with the
global (normalized) spectrum in Figure 11.

We used a clustering technique? to place the centers
for our local data sets on the surface of the torus, and
proceeded to calculate the local dimension. The result
of this technique is shown in Figure 12, where we see
the placement of the clusters as solid dots (the curve
represents the outline of the data). The next step
involves computing the modified SV curves, and the
result in shown in Figure 13, where we see the signature
linear scalings of the first two SV curves, confirming our
initial analysis and allowing us to proceed to the local
modeling step. The full analysis and further examples
are available in [8].

TThe technique took into account both spatial location and

velocity. More details can be found in [8]

Figure 10: The aged solution to the KS Equation,
a = 87. The solution is shown in the primary 3
dimensional coordinate system. Note the appearance
of a “thin torus”.
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Figure 11: The normalized spectrum of the global
covariance matrix for the aged solution to the KS
equation. The values suggest that the torus seen in the
previous figure has a high (global) dimension.



Figure 12: The locations of the cluster centers (in
the KL coordinate system) for the solution to the KS
Equation. The centers all lie on the surface, and are
shown as filled dots, while an outline of the original
data is drawn by the solid line.
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Figure 13: The result of the modified SV algorithm
on the aged solutions to the KS Equation. Numerical
values are shown with triangles, and the analytic curves
are shown as solid lines. Here we clearly see the two
dimensional structure from the two linear scalings.

7 Summary

In this paper, we have presented two extensions to the
local SVD technique for determining the topological di-
mension of data representing a smooth manifold with
low noise. The results provide for the option of au-
tomating the choice of dimension based on the scalings
of the SV curves, or a detailed analysis of the surface
structure. Indeed, such an analysis can be used to detect
whether models based on manifolds are appropriate.

Our algorithm is based on the Taylor approximation
to a surface and hence is ideally suited for manifolds. As
such, it will not perform well for data that does not have
a reasonable local linear approximation such as data in
clouds of noise; for such problems methods based purely
on the statistics of the data should be used, see, e.g.,
[13, 11].

Our primary interest is in determining local coordi-
nate systems for building dynamical models using neural
charts [8] or the Whitney Reduction Network [4] . Thus
local dimensionality estimation techniques which also
provide local coordinates systems are especially attrac-
tive. Given our models sit in high-dimensional spaces
and associated massive data sets have been accumulated
only automated procedures are practical.
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