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ABSTRACT: Dialkylsilanediols have been found to be an effective functional group for the design of active-
site-directed protease inhibitors, including aspartic (HIV protease) and metallo (ACE and thermolysin)
proteases. The use of silanediols is predicated on its resemblance to the hydrated carbonyl transition-state
structure of amide hydrolysis. This concept has been tested by replacing the presumed tetrahedral carbon
of a thermolysin substrate with a silanediol group, resulting in an inhibitor with an inhibition constant

Ki = 40 nM. The structure of the silanediol bound to the active site of thermolysin was found to have a
conformation very similar to that of a corresponding phosphonamidate inhiliter (L0 nM). In both

cases, a single oxygen is within bonding distance to the active-site zinc ion, mimicking the presumed
tetrahedral transition state. There are binding differences that appear to be related to the presence or
absence of protons on the oxygens attached to the silicon or phosphorus. This is the first crystal structure
of an organosilane bound to the active site of a protease.
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active-site zinc ion that activates the scissile amide band ( 7 - 8 i °
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Ficure 1: Hydrolysis of peptides catalyzed by the active-site zinc
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L . . . and zinc-binding groups used to design synthetic metalloprotease
metalloprotease inhibitor design is selection of a functional j,hibitors.
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Table 1: Data Collection and Refinement Statistics

Ph_ Ph
data collection statistiés
| \g/\/ o space group6,22;
“OH HO

cell dimensionsa=b=93.52 A,c=131.77 A
10a X = Si(OH), resolution range, 31-:92.1 A
b = CHOH completeness, 96.1% (93.1%)
Rinerga® 11.1% (34.0%)
H Ilo(l), 6.4 (2.2)
Ph\[rN\:/X N redundancy, 6.0 (6.2)
0 O COgH refinement statistics
Ph resolution range, 31:92.1 A
11a X = SI(OH), number of reflections,
b =0C=0 18 553 (working set)/1015 (test set)
R factort 15.5% (working set)/15.8% (all data);
o Rirees 22.5%

H H rms deviations
Ph Y NXsy N\)LOH bond lengths, 0.008 A

0 o) bond angles, 11
YK (M) B factor correlations, 4.9 A
i
12a Y= CHp X= Si(OH), Z=CH, 40 mean factors

protein atoms (main chain), 1%A

b = 8 = Egzn - E:z ;01 protein atoms (side chain), 262A
c - = PO, = : inhibitor atoms? 17 (32) &
d =0 =PO,H =0 9,000 solvent atoms, 33 A

Ficure 2: Silanediol protease inhibitors and their carbon and

aval i th fer to the high- lution bin 22150
phosphorus analogues with inhibition constardig (9). alues in parentheses refer to the high-resolution bin (2

A). P Rnergegives the agreement between symmetry-related reflections.

. R = Ynailli(thk) Y T(hK) VY nayili(hkl). ¢ Working set= the 18 553
12b—d was replaced with a methylene group, a consequenceefiections used for refinemenRyes = R factor based on the 1015

of the strongly acidic conditions used to prepare the silanediol reflections not used for refinemenitThe benzyl group of the inhibitor
(20). The replacement of a Cbz (benzyloxycarbonyl) group is disordered. When this group is excluded, the mean inhiBifactor

(Y = 0, 12b—d) with a dihydrocinnamoyl group (¥= CHs, is 17 A2 Including it, the mean inhibitoB factor is 32 &.
123 was expected to be of little consequence, because that
oxygen has no significant interaction with the enzyme.  sulfate, sitting drops of 1L of protein and 1QuL of buffer

While the advantages of using a phosphorus ari@h-¢ (50 mM MES at pH 6.0, 45% (v/v) DMSO, and 1.0 M NaCl)
d, at pH > 4) for the interaction with the active-site zinc were then prepared. After the crystals grew for several days,
cation are obvious, the use of these phosphorus groups ashey were transferred in one step to a solution of 25 mM
pharmaceutical agents requires their delivery in the form of MES at pH 6.0, 500 mM NacCl, 1 mM Cag land 5% (v/v)
an uncharged ester prodrug that must be hydrolyzedvo DMSO. The crystals were then soaked for 3 days in the
(21). The neutrality of a silanediol group could allow its use above buffer with 5Q:M silanediol added.
without protection or activation. o Crystallography After the crystal with bound ligand was

Silanediolsl1aand12aare both low nanomolar inhibitors  ,ounted in a glass capillary tube, diffraction data were
of metalloproteases, yet dialkylsilanediols are not well-known q|jected using a Rigaku rotating anode X-ray source and
for their abilities to bind metals. A cyclic siloxane surround- R_ayis v image plate detector. A total of 50 images were
ing a potassium ion has been report@@)( and structures  ecorded, each with an exposure time of 15 min during a
of zinc ions chelated by silicates have been publisl®)L (1 ¢ oscillation. The images were processed with Mosfim
Trialkylsilanols have also been promoted as transition-metal (37) and the data were reduced with Sc&3)( Refinement
ligands @4, 25). _ _ _ _ was carried out with TNT 33) against a working set of

_To more fully investigate how a silanediol group interacts 1g 553 reflections, with a random test set of 1015 reflections
with the active site of a metalloprotease, the silanel®d (o apout 5%) excluded from the refinement process for
was crystallized with thermolysin. Phosphinic ad2bhas  ¢ross-validation 34). Using a native thermolysin structure
been discussed by Bartlett et &26f and Grobelsky et al. ~ (ppp |D 8TLN) as a starting model, an initi&sianediol —
(27). Here, we describe the crystal structure of the silanediol Fonative glectron-density map was ambiguous, in part because
12abound to thermolysin and compare this to complexes of the presence of a dipeptide in the active site in the native
between the thermolysin and phosphonamidite [PDB structure 85). For refinement, to decouple the test set and
ID STMN (28)] and phosphonate2d [PDB ID 6TMN (29)]. working set, all solvent molecules and ligand atoms were

removed from the starting model, tiBefactors were set to

EXPERIMENTAL PROCEDURES the WilsonB factor (16.4) and a random coordinate shift

Inhibitor/Enzyme Preparation and Crystallizatioithe was applied to all atoms such that the rms shift was 1.0 A
silanediol was prepared as previously report&®).(Ther- (33, 34). Some refinement was then done using rigid-body
molysin from Bacillus thermoproteolyticusvas purchased refinement of the whole molecule followed by individual
from Calbiochem and stored a20 °C. Hexagonal crystals  atom positional refinement using conjugate direction mini-
(space group?6,22) were grown using vapor diffusion with  mization of a least-squares target functi@g)( The binding
sitting drops based on the procedure described by Hausratimode for the silanediol could then be discerned from a
et al. G0). Briefly, the protein was dissolved at 100 mg/mL F/slanediol — | omit glectron-density map. The ligand was built
in 50 mM MES at pH 6.0 and 45% (v/v) DMSO (dimethyl into this map; solvent molecules were added; and the
sulfoxide). With a well solution of 30% (w/v) ammonium structure was further refined with several rounds of map
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- LT '_‘4-‘1’."‘-] Table 2: Polar Interaction Distances (A) between the Enzyme and
4 k™ Inhibitor for the Silanedioll2a and Phosphonamidafec

contacting atom (protein or bound

- gilicon & o solvent/ion) and distance (A) .
R inhibitor difference
v aton® silanediol (1Y3G) zgpll (5TMN) A
- 110 Wat 606 O 2.8 same 2.6 -0.2
o T 7 12N Ala 1130 29 Wat3620 2.9 0.0
y iy '° o7 1201 Glu1l66 OE1 3.1 same 3.1 0.0
g Y . L= v His231 NE2 2.6 same 2.9 0.3
Zinc o Zn++ 1.9 same 2.1 0.2
\ = 1202 DMSO 8020 2.6 Wat3620 2.7 0.1
'Glu 143 Ve I3CH2 (N) Ala1130 3.0 same 3.0 0.0
i 130 Arg 203NH1 2.9 same 3.0 0.1
4 Arg 203NH2 2.9 same 3.0 0.1
[ 140 Asn112ND2 2.9 same 3.0 0.1
FiGURE 3: Refined model of the siIanedidJZainllth% ?ctive site 14 OXT w:: gggg g? zgmg gg 81
i T llanediol omit . . .
of thermolysin. The electron density shownFg Fomit Wat 604 O 25 same 26 01

whereF Mt are structure factors based on a model refined with no
atoms in the active site. The phases were also calculated from this 2 The contact distances between the hydrogen donor and acceptor

omit structure. The density is contoured-880 (blue) and—3c for all potential hydrogen bonds made by the silanediol or the
(red). For more detail on the binding interactions, see Figure 4. phosphonamidate inhibitor to the enzyme or solvent are listed. Hydrogen
The figure was prepared with MOLSCRIP36] and Raster3D3(7). bonds were determined with HBPLUS4) using a 3.2 A donor

acceptor cutoff from the coordinates for the complexes between the

inspection with manual side-chain, ligand, and water adjust- thermolysin and silanediol (PDB ID 1Y3G) and the thermolysin and

me%t followed by atomic coordinate gﬂdfactor refinemenjt phosphonamidate (PDB ID 5TMN). Non-hydrogen-bonding interaction
S y . . o distances were calculated with EAPD&). Bold interaction distances

by minimization. Data collection and refinement statistics indicate that the contact satisfies HBPLUS hydrogen-bonding require-

are given in Table 1. Coordinates and structure factors havements. Regular-type interaction distances indicate that the contact does

been deposited in the Protein Data Bank (PDB ID 1Y3G). not satisfy hydrogen-bonding requirements, either because of incorrect
angles or incompatible donor and acceptor. We show these regular-

type distances for comparison purposeshibitor atoms are listed by
RESULTS AND DISCUSSION the inhibitor residue number (e.g.,+14, corresponding to Figure 4)

The structure of the thermolysin/silanediol complex is and atom name. In most cases, the inhibitors contact the same atoms
well-refined with acceptable geometry and excellent agree- In both structures.
ment with the diffraction data (Table 1). The silanediol
inhibitor 12a binds with the tetrahedral silicon center the inhibitor from its C-terminal leucine to its N-terminal
mimicking the proposed transition state for peptide hydroly- Cbz group. The C-terminal residues are positioned essentially
sis, with the zinc ion interacting with both silicon hydroxyls ~the same relative to the enzyme. The silane group is shifted
(Figures 2 and 3). Glu 143, which is thought to help activate somewhat from the phosphate group, and the N-terminal
the attacking water molecule, interacts preferentially with benzyl group is repositioned substantially.
one of the silicon oxygens (Figure 3). Additionally, a DMSO There are three principal binding differences, and these
molecule is seen binding next to and interacting with the can be rationalized on the basis of the structural differences
inhibitor. between the inhibitors (Table 2 and Figure 4). Phosphorus
Overall, the silanediol inhibitot 2abinds similarly to the and silicon have slightly different covalent radii (1.06 A for
phosphonamidaté2cand phosphonatt2d (Figure 4). There phosphorus and 1.11 A for silicon), as well as differences
are some differences, which increase as one moves alongn their intrinsic bond angles3g). With the silanediol

Ficure 4: Wall-eyed stereoview showing the binding detail, comparing the silané@m(white carbons) to the phosphonamidatc

(gray carbons). The amino acids or amino acid analogues comprising the inhibitors are labéfedrte atoms labeled X, Y, and Z are
identical to those in Figure 2. Some key potential hydrogen bonds that are discussed in the text are indicated with dashed lines. The
phosphonaté2d (not shown) binds essentially identically to the phosphonamitztémaximum difference of 0.2 A)29). The figure was

prepared with MOLSCRIPT3g).
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inhibitor 123, the silicon atom has hydroxyl substituents, and silicon-based inhibitors, both in termskfand modes
while the phosphorus of the phosphonamidafc has of binding, might seem surprising based on the neutrality of
oxyanion substituents. This accounts for two of the observed the silanediol and the anionic nature of the phosphorus groups
differences. First, His 231 shifts about 0.3 A closer to one and their interaction with the cationic zinc ion. Nevertheless,
of the silicon hydroxyls compared to its distance from the the use of silanediols as rational components for drug design
equivalent phosphorus oxygen (Table 2). Histidine 231 is is now on firmer footing.

considered to make a critical interaction between the enzyme
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