Extra Practice: Algebra and Trig

1. Perform each of the following operations:
 (a) \[
 \frac{3s^2 - 48}{s^2 + 2s - 8} \div \frac{7s - 28}{s^2 - 4s + 4}
 \]
 (b) \[
 \frac{1}{p} + \frac{1}{q} \div \frac{1}{pq}
 \]

2. Simplify each of the following:
 (a) \[
 \frac{(p + 1)^{1/2} - p(1/2)(p + 1)^{-1/2}}{p + 1}
 \]
 (b) \[
 \frac{3(2x^2 + 5)^{1/3} - x(2x^2 + 5)^{-2/3}(4x)}{(2x^2 + 5)^{2/3}}
 \]
 (c) \[
 \frac{(r - 2)^{2/3} - r(2/3)(r - 2)^{-1/2}}{(r - 2)^{4/3}}
 \]

3. Practice with rules of exponents: Simplify, writing each expression without negative exponents:
 (a) \[
 \frac{6r^3s^{-2}}{6^{-1}r^4s^{-3}}
 \]
 (b) \[
 \frac{(2x^{-3})^2(3x^2)^{-2}}{6(x^2y^3)^{-1}}
 \]

4. Practice with the inverse trigonometric functions (See Section 1.6)
 (a) Find the exact value of each expression:
 \[
 \cos^{-1}(-1) \quad \arctan(1) \quad \sin^{-1}(1/\sqrt{2}) \quad \tan^{-1}(1/\sqrt{3})
 \]
 (b) Show (using a triangle) that \(\cos(\sin^{-1}(x)) = \sqrt{1 - x^2}\), then simplify \(\tan(\cos^{-1}(x))\) using a similar technique.

5. Solve for \(x\):
 (a) \(2\cos(x) + 1 > 0\) (in the interval \([0, 2\pi]\))
 (b) \((x - 2)/(x^2 - 2x - 3) \leq 0\)
 (c) \(\sin(x) > \cos(x)\) (in the interval \([0, 2\pi]\))
Solutions

1. Perform each of the following operations:
 (a) \(\frac{7}{3(s - 2)} \)
 (b) \(\frac{q + p}{pq - 1} \)

2. Simplify each of the following:
 (a) \(\frac{3p + 2}{2(p + 1)^{3/2}} \)
 (b) \(\frac{2x^2 + 15}{(2x^2 + 5)^{4/3}} \)
 (c) \(\frac{r - 6}{3(r - 2)^{5/3}} \)

3. Practice with rules of exponents: Simplify, writing each expression without negative exponents:
 (a) \(\frac{36s}{r} \)
 (b) \(\frac{2y^3}{27x^8} \)

4. Practice with the inverse trigonometric functions (See Section 1.6)
 (a) Find the exact value of each expression:
 \[
 \cos^{-1}(-1) = \pi \quad \arctan(1) = \frac{\pi}{4} \quad \sin^{-1}(1/\sqrt{2}) = \frac{\pi}{4} \quad \tan^{-1}(1/\sqrt{3}) = \frac{\pi}{6}
 \]
 (b) Show (using a triangle) that \(\cos(\sin^{-1}(x)) = \sqrt{1-x^2} \), then simplify \(\tan(\cos^{-1}(x)) \)
 using a similar technique.
 SOLUTION: For the first one, use \(\theta = \sin^{-1}(x) \), or \(\sin(\theta) = x \) and draw the appropriate right triangle. The hypotenuse is 1, the legs are \(x \) and \(\sqrt{1-x^2} \), so the cosine of the given angle is \(\sqrt{1-x^2}/1 \).
 Similarly, the right triangle for the second one label \(\theta \), \(x \) and 1 so that \(\cos(\theta) = x/1 \), then the other leg is \(\sqrt{1-x^2} \). Take the tangent of \(\theta \) to get \(\sqrt{1-x^2}/x \).

5. Solve for \(x \):
 (a) \(2 \cos(x) + 1 > 0 \)
 SOLUTION: \(\cos(x) = -1/2 \) if \(x = 2\pi/3 \) or \(x = 4\pi/3 \) (on the unit circle). Between these angles, \(\cos(x) > -1/2 \), so: \(0 < x < 2\pi/3 \) or \(4\pi/3 < x < 2\pi \).
(b) \[\frac{(x - 2)}{(x^2 - 2x - 3)} \leq 0 \] Use a sign chart. The factors are zero where \(x = -1, 2, \) and 3, which divides the number line into four parts. The ones in which the expression is negative are:

\[x < -1 \quad \text{or} \quad 2 \leq x < 3 \]

(c) \(\sin(x) > \cos(x) \)

SOLUTION: Using \(\theta \), and the unit circle, we look at points \(x = \cos(\theta) \) and \(y = \sin(\theta) \) where \(y > x \). They are equal where the circle and the line \(y = x \) meet. At \(\theta = \pi/4 \) and \(5\pi/4 \), and \(y > x \) in between:

\[\frac{5\pi}{4} < \theta < \frac{\pi}{4} \]