Definition

A function $z = f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Vocab: The point (a, b) is the minimizer, the value $f(a, b)$ is the minimum.
Definition

A function \(z = f(x, y) \) has a local minimum at a point \((a, b)\) if there is a disk about \((a, b)\) so that \(f(a, b) \leq f(x, y)\) for all \((x, y)\) in the disk.

Vocab: The point \((a, b)\) is the minimizer, the value \(f(a, b)\) is the minimum.
Definition

A function $z = f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Vocab: The point (a, b) is the minimizer, the value $f(a, b)$ is the minimum.

Definition

A function $z = f(x, y)$ has a local maximum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \geq f(x, y)$ for all (x, y) in the disk.
Definition
A function \(z = f(x, y) \) has a local minimum at a point \((a, b)\) if there is a disk about \((a, b)\) so that \(f(a, b) \leq f(x, y)\) for all \((x, y)\) in the disk.

Vocab: The point \((a, b)\) is the minimizer, the value \(f(a, b)\) is the minimum.

Definition
A function \(z = f(x, y) \) has a local maximum at a point \((a, b)\) if there is a disk about \((a, b)\) so that \(f(a, b) \geq f(x, y)\) for all \((x, y)\) in the disk.

Definition
A function \(z = f(x, y) \) has a global min (max) at a point \((a, b)\) in a given region \(D\) if \(f(a, b)\) is the smallest (largest) point in all of \(D\) (could be equality, too- There could be multiple max's and min's).
As in Calc I, we have the Extreme Value Theorem:

Theorem

If \(z = f(x, y) \) is continuous on a closed and bounded region in the plane, \(D \), then \(f \) attains a global max and min on \(D \).
As in Calc I, we have the Extreme Value Theorem:

Theorem

If $z = f(x, y)$ *is continuous on a closed and bounded region in the plane, D, then f attains a global max and min on D.*

“Closed” - Includes all of its boundary.
As in Calc I, we have the Extreme Value Theorem:

Theorem

If \(z = f(x, y) \) is continuous on a closed and bounded region in the plane, \(D \), then \(f \) attains a global max and min on \(D \).

“Closed” - Includes all of its boundary.

“Bounded” - Could be put in a circle with finite radius.
As in Calc I, we have the Extreme Value Theorem:

Theorem

If \(z = f(x, y) \) is continuous on a closed and bounded region in the plane, \(D \), then \(f \) attains a global max and min on \(D \).

“Closed” - Includes all of its boundary.

“Bounded” - Could be put in a circle with finite radius.

Definition

The critical points of \(z = f(x, y) \) are points where \(\nabla f = 0 \) or either (or both) partial derivatives do not exist.
In the case that the EVT applies (global max/min on a closed and bounded domain), the candidates for where the max/min can occur:
In the case that the EVT applies (global max/min on a closed and bounded domain), the candidates for where the max/min can occur:

- Critical points
- Boundary

Check them, and find the max/min on each (build a table).
Example: Find the global max and global min:

\[f(x, y) = 5 + x^2 + x - 2y^2 \quad -1 \leq x \leq 1, \quad -1 \leq y \leq 1 \]
Example: Find the global max and global min:

\[f(x, y) = 5 + x^2 + x - 2y^2 \quad -1 \leq x \leq 1, \quad -1 \leq y \leq 1 \]

SOLUTION: Find critical points:

\[f_x(x, y) = 2x + 1 \quad f_y(x, y) = -4y \quad \Rightarrow \quad (-1/2, 0) \]

Value of \(f \) at the critical point: 4.75.
Check the boundary:

- \(f(x, y) = 5 + x^2 + x - 2y^2 \) for \(x = 1, -1 \leq y \leq 1 \):
Check the boundary:

- \(f(x, y) = 5 + x^2 + x - 2y^2 \) for \(x = 1, -1 \leq y \leq 1 \):

\[
 f(1, y) = 7 - 2y^2 \quad \text{for} \quad -1 \leq y \leq 1
\]
Check the boundary:

\[f(x, y) = 5 + x^2 + x - 2y^2 \] for \(x = 1, -1 \leq y \leq 1 \):

\[
\begin{array}{c|c}
 y & f(1, y) \\
 \hline
 -1 & f(1, -1) = 5 \\
 0 & f(1, 0) = 7 \\
 1 & f(1, 1) = 5 \\
\end{array}
\]

\[f(1, y) = 7 - 2y^2 \] for \(-1 \leq y \leq 1\).
Check the boundary:

- \(f(x, y) = 5 + x^2 + x - 2y^2 \) for \(x = 1, \ -1 \leq y \leq 1: \)

\[
f(1, y) = 7 - 2y^2 \quad -1 \leq y \leq 1
\]

<table>
<thead>
<tr>
<th>(y)</th>
<th>(f(1, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>(f(1, -1) = 5)</td>
</tr>
<tr>
<td>0</td>
<td>(f(1, 0) = 7)</td>
</tr>
<tr>
<td>1</td>
<td>(f(1, 1) = 5)</td>
</tr>
</tbody>
</table>

- \(x = -1, \ -1 \leq y \leq 1: \)
Check the boundary:

- $f(x, y) = 5 + x^2 + x - 2y^2$ for $x = 1$, $-1 \leq y \leq 1$:

\[
\begin{array}{c|c}
 y & f(1, y) \\
 \hline
 -1 & f(1, -1) = 5 \\
 0 & f(1, 0) = 7 \\
 1 & f(1, 1) = 5 \\
\end{array}
\]

- $x = -1$, $-1 \leq y \leq 1$:

\[
f(-1, y) = 5 - 2y^2 \quad -1 \leq y \leq 1
\]
Check the boundary:

- $f(x, y) = 5 + x^2 + x - 2y^2$ for $x = 1, \ -1 \leq y \leq 1$:

 $f(1, y) = 7 - 2y^2 \quad -1 \leq y \leq 1$

<table>
<thead>
<tr>
<th>y</th>
<th>$f(1, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$f(1, -1) = 5$</td>
</tr>
<tr>
<td>0</td>
<td>$f(1, 0) = 7$</td>
</tr>
<tr>
<td>1</td>
<td>$f(1, 1) = 5$</td>
</tr>
</tbody>
</table>

- $x = -1, \ -1 \leq y \leq 1$:

 $f(-1, y) = 5 - 2y^2 \quad -1 \leq y \leq 1$

<table>
<thead>
<tr>
<th>y</th>
<th>$f(-1, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$f(-1, -1) = 3$</td>
</tr>
<tr>
<td>0</td>
<td>$f(-1, 0) = 5$</td>
</tr>
<tr>
<td>1</td>
<td>$f(-1, 1) = 3$</td>
</tr>
</tbody>
</table>
\[f(x, y) = 5 + x^2 + x - 2y^2 \text{ for } -1 \leq x \leq 1, \ y = -1: \]
\[f(x, y) = 5 + x^2 + x - 2y^2 \text{ for } -1 \leq x \leq 1, \ y = -1: \]

\[f(x, -1) = x^2 + x + 3 \quad -1 \leq x \leq 1 \]
• $f(x, y) = 5 + x^2 + x - 2y^2$ for $-1 \leq x \leq 1$, $y = -1$:

\[
f(x, -1) = x^2 + x + 3 \quad -1 \leq x \leq 1
\]

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x, -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$f(-1, -1) = 3$</td>
</tr>
<tr>
<td>$-1/2$</td>
<td>$f(-1/2, -1) = 2.75$</td>
</tr>
<tr>
<td>1</td>
<td>$f(1, -1) = 5$</td>
</tr>
</tbody>
</table>
\[
f(x, y) = 5 + x^2 + x - 2y^2 \text{ for } -1 \leq x \leq 1, \ y = -1:
\]

\[
f(x, -1) = x^2 + x + 3 \quad -1 \leq x \leq 1
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x, -1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>-1/2</td>
<td>2.75</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

For \(y = -1\), we have the same function and same interval.
Conclusion:
The global maximum is 7, it occurs at \((1, 0)\) on the boundary. The global minimum is 2.75, it occurs twice on the boundary, at \((-1/2, \pm 1)\).
Local Extrema

To find local extrema, in Calc I we had the first and second derivative tests. It is not easy to find a substitute- A surface can be both CU and CD at a saddle point.
The Second Derivatives Test

Let

\[
D(a, b) = \left| \begin{array}{cc}
 f_{xx}(a, b) & f_{xy}(a, b) \\
 f_{yx}(a, b) & f_{yy}(a, b)
\end{array} \right|
\]

Then, if

\[D > 0 \text{ and } f_{xx}(a, b) > 0 \] (takes the place of CU),
\[f(a, b) \] is a local min.

\[D > 0 \text{ and } f_{xx}(a, b) < 0 \] (takes the place of CD),
\[f(a, b) \] is a local max.

\[D < 0 \] we get neither (SADDLE POINT)

\[D = 0 \] the test fails (we could have local max, local min or saddle).
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = \]

Then, if \(D(a, b) > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.

If \(D(a, b) > 0 \) and \(f_{xx}(a, b) < 0 \) (takes the place of CD), \(f(a, b) \) is a local max.

If \(D(a, b) < 0 \), we get neither (SADDLE POINT).

If \(D(a, b) = 0 \), the test fails (we could have local max, local min, or saddle).
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]

Then, if

- If \(D > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]

Then, if

- If \(D > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.
- If \(D > 0 \) and \(f_{xx}(a, b) < 0 \) (takes the place of CD), \(f(a, b) \) is a local max.

If \(D < 0 \), we get neither (SADDLE POINT)

If \(D = 0 \), the test fails (we could have local max, local min or saddle).
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]

Then, if

- If \(D > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.
- If \(D > 0 \) and \(f_{xx}(a, b) < 0 \) (takes the place of CD), \(f(a, b) \) is a local max.
- If \(D < 0 \), we get neither
- If \(D = 0 \), the test fails (we could have local max, local min or saddle).
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]

Then, if

- If \(D > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.
- If \(D > 0 \) and \(f_{xx}(a, b) < 0 \) (takes the place of CD), \(f(a, b) \) is a local max.
- If \(D < 0 \), we get neither (SADDLE POINT)
The Second Derivatives Test

Let

\[D(a, b) = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix} = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b) \]

Then, if

- If \(D > 0 \) and \(f_{xx}(a, b) > 0 \) (takes the place of CU), \(f(a, b) \) is a local min.
- If \(D > 0 \) and \(f_{xx}(a, b) < 0 \) (takes the place of CD), \(f(a, b) \) is a local max.
- If \(D < 0 \), we get neither (SADDLE POINT)
- If \(D = 0 \), the test fails (we could have local max, local min or saddle).
Example: Classify the Critical Points

\[f(x, y) = 3y^3 + 9y^2 - 3xy + \frac{1}{2}x^2 + 9y - 9x \]
Example: Classify the Critical Points

\[f(x, y) = 3y^3 + 9y^2 - 3xy + \frac{1}{2}x^2 + 9y - 9x \]

Compute the partials:
Example: Classify the Critical Points

\[f(x, y) = 3y^3 + 9y^2 - 3xy + \frac{1}{2}x^2 + 9y - 9x \]

Compute the partials:

\[f_x = -3y + x - 9 \quad f_y = 9y^2 + 18y - 3x + 9 \]
Example: Classify the Critical Points

\[f(x, y) = 3y^3 + 9y^2 - 3xy + \frac{1}{2}x^2 + 9y - 9x \]

Compute the partials:

\[f_x = -3y + x - 9 \quad f_y = 9y^2 + 18y - 3x + 9 \]

And the second partials:
Example: Classify the Critical Points

\[f(x, y) = 3y^3 + 9y^2 - 3xy + \frac{1}{2}x^2 + 9y - 9x \]

Compute the partials:

\[f_x = -3y + x - 9 \quad f_y = 9y^2 + 18y - 3x + 9 \]

And the second partials:

\[f_{xx} = 1 \quad f_{xy} = -3 \quad f_{yy} = 18y + 18 \]
Critical points

\[-3y + x - 9 = 0 \quad \text{and} \quad 9y^2 + 18y - 3x + 9 = 0\]

Substitute \(x = 3(y + 3)\) into the second to eliminate \(x\):

\[9y^2 + 18y - 9(y + 3) + 9 = 9y^2 + 9y - 18 = 0\]

\[y^2 + y - 2 = 0\]

Therefore, \(y = -2\) and \(y = 1\). Backsub to get the ordered pairs: \((3, -2), (12, 1)\)
Critical points

\[-3y + x - 9 = 0 \quad \text{and} \quad 9y^2 + 18y - 3x + 9 = 0\]
Critical points

\[-3y + x - 9 = 0 \quad \text{and} \quad 9y^2 + 18y - 3x + 9 = 0\]

Substitute \(x = 3(y + 3)\) into the second to eliminate \(x\):
Critical points

\[-3y + x - 9 = 0 \quad \text{and} \quad 9y^2 + 18y - 3x + 9 = 0\]

Substitute \(x = 3(y + 3)\) into the second to eliminate \(x\):

\[9y^2 + 18y - 9(y + 3) + 9 = 9y^2 + 9y - 18 = 0 \quad \Rightarrow \quad y^2 + y - 2 = 0\]
Critical points

\[-3y + x - 9 = 0 \quad \text{and} \quad 9y^2 + 18y - 3x + 9 = 0\]

Substitute \(x = 3(y + 3)\) into the second to eliminate \(x\):

\[9y^2 + 18y - 9(y + 3) + 9 = 9y^2 + 9y - 18 = 0 \quad \Rightarrow \quad y^2 + y - 2 = 0\]

Therefore, \(y = -2\) and \(y = 1\). Backsub to get the ordered pairs:

\[(3, -2) \quad (12, 1)\]
Do the Second Derivatives test on each CP; simplify first:

\[D(x, y) = (1)(18y + 18) - (-3)^2 = 18y + 9 \]
Do the Second Derivatives test on each CP; simplify first:

\[D(x, y) = (1)(18y + 18) - (-3)^2 = 18y + 9 \]

So, at \((3, -2)\), \(D(3, -2) = -36 + 9 < 0\) so that is a SADDLE POINT.
Do the Second Derivatives test on each CP; simplify first:

\[D(x, y) = (1)(18y + 18) - (-3)^2 = 18y + 9 \]

So, at \((3, -2)\), \(D(3, -2) = -36 + 9 < 0\) so that is a SADDLE POINT. At \((12, 1)\), we have \(D(12, 1) = 18 + 9 > 0\), and \(f_{xx} > 0\), so we have a
Do the Second Derivatives test on each CP; simplify first:

\[D(x, y) = (1)(18y + 18) - (-3)^2 = 18y + 9 \]

So, at (3, −2), \(D(3, -2) = -36 + 9 < 0 \) so that is a SADDLE POINT.
At (12, 1), we have \(D(12, 1) = 18 + 9 > 0 \), and \(f_{xx} > 0 \), so we have a LOCAL MIN.
Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

\[g(x, y) = xy(1 - x - y) \]
Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

\[g(x, y) = xy(1 - x - y) \]

SOLUTION: Find the critical points, then classify according to the Second Derivatives Test. First, we’ll compute the partial derivatives (and the seconds):
Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

\[g(x, y) = xy(1 - x - y) \]

SOLUTION: Find the critical points, then classify according to the Second Derivatives Test. First, we’ll compute the partial derivatives (and the seconds):

\[g_x = y(1 - 2x - y) \quad g_{xx} = -2y \quad g_{xy} = 1 - 2x - 2y \]
\[g_y = x(1 - x - 2y) \quad g_{yy} = -2x \]
Solving for the critical points,

\[y(1 - 2x - y) = 0 \implies y = 0 \text{ or } y = 1 - 2x \]
Solving for the critical points,

\[y(1 - 2x - y) = 0 \quad \Rightarrow \quad y = 0 \quad \text{or} \quad y = 1 - 2x \]

In the case that \(y = 0 \), we have:

\[x(1 - x) = 0 \quad \Rightarrow \quad x = 0 \quad \text{or} \quad x = 1 \]
Solving for the critical points,

\[y(1 - 2x - y) = 0 \implies y = 0 \quad \text{or} \quad y = 1 - 2x \]

In the case that \(y = 0 \), we have:

\[x(1 - x) = 0 \implies x = 0 \text{ or } x = 1 \]

So far, we have two critical points, \((0, 0)\) and \((1, 0)\). If \(y = 1 - 2x \), then:
Solving for the critical points,

\[y(1 - 2x - y) = 0 \implies y = 0 \text{ or } y = 1 - 2x \]

In the case that \(y = 0 \), we have:

\[x(1 - x) = 0 \implies x = 0 \text{ or } x = 1 \]

So far, we have two critical points, \((0, 0)\) and \((1, 0)\). If \(y = 1 - 2x \), then:

\[x(1 - x - 2(1 - 2x)) = 0 \implies x = 0 \text{ or } x = 1/3 \]
Solving for the critical points,

\[y(1 - 2x - y) = 0 \quad \Rightarrow \quad y = 0 \quad \text{or} \quad y = 1 - 2x \]

In the case that \(y = 0 \), we have:

\[x(1 - x) = 0 \quad \Rightarrow \quad x = 0 \quad \text{or} \quad x = 1 \]

So far, we have two critical points, \((0, 0)\) and \((1, 0)\). If \(y = 1 - 2x \), then:

\[x(1 - x - 2(1 - 2x)) = 0 \quad \Rightarrow \quad x = 0 \quad \text{or} \quad x = 1/3 \]

Now we have two more fixed points: \((0, 1)\) or \((1/3, 1/3)\).
In each case apply the Second Derivatives Test:

\[D = g_{xx} g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]
In each case apply the Second Derivatives Test:

\[D = g_{xx}g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]

<table>
<thead>
<tr>
<th>Point</th>
<th>(D)</th>
<th>(g_{xx})</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>-1</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
In each case apply the Second Derivatives Test:

\[D = g_{xx}g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]

<table>
<thead>
<tr>
<th>Point</th>
<th>(D)</th>
<th>(g_{xx})</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>(-1)</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>(-1)</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
</tbody>
</table>
In each case apply the Second Derivatives Test:

\[D = g_{xx}g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>(g_{xx})</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
</tbody>
</table>
In each case apply the Second Derivatives Test:

\[D = g_{xx}g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>g_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(1/3, 1/3)</td>
<td>1/3</td>
<td>-2/3</td>
<td></td>
</tr>
</tbody>
</table>
In each case apply the Second Derivatives Test:

\[D = g_{xx}g_{yy} - g_{xy}^2 = 4xy - (1 - 2x - 2y)^2 \]

<table>
<thead>
<tr>
<th>Point</th>
<th>(D)</th>
<th>(g_{xx})</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>-1</td>
<td>N/A</td>
<td>Saddle</td>
</tr>
<tr>
<td>(1/3, 1/3)</td>
<td>1/3</td>
<td>-2/3</td>
<td>Local Max</td>
</tr>
</tbody>
</table>
Here is the contour plot, and we see the saddles and local max:
Example:

Find the local max, min and saddle points:

\[f(x, y) = x^2 y e^{-x^2 - y^2} \]

SOLUTION: First compute critical points:
Example:

Find the local max, min and saddle points:

\[f(x, y) = x^2 ye^{-x^2-y^2} \]

SOLUTION: First compute critical points:

\[f_x(x, y) = 2xy (1 - x^2) e^{-x^2-y^2} \quad f_y(x, y) = x^2 (1 - 2y^2) e^{-x^2-y^2} \]

and second derivatives:
Example:

Find the local max, min and saddle points:

\[f(x, y) = x^2 y e^{-x^2 - y^2} \]

SOLUTION: First compute critical points:

\[f_x(x, y) = 2xy(1 - x^2)e^{-x^2 - y^2} \quad f_y(x, y) = x^2(1 - 2y^2)e^{-x^2 - y^2} \]

and second derivatives:

\[f_{xx} = (2y - 10x^2 y + 4x^4 y)e^{-x^2 - y^2} \quad f_{yy} = (4x^2 y^3 - 6x^2 y)e^{-x^2 - y^2} \]

and

\[f_{xy} = 2x(1 - x^2 - 2y^2 + 2x^2 y^2)e^{-x^2 - y^2} \]
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td>Undetermined</td>
</tr>
<tr>
<td>$(1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td></td>
</tr>
</tbody>
</table>
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td>Undetermined</td>
</tr>
<tr>
<td>$(1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td>Local Min</td>
</tr>
</tbody>
</table>
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td>Undetermined</td>
</tr>
<tr>
<td>$(1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td>Local Min</td>
</tr>
<tr>
<td>$(-1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td></td>
</tr>
</tbody>
</table>
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td>Undetermined</td>
</tr>
<tr>
<td>$(1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td>Local Min</td>
</tr>
<tr>
<td>$(-1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(-1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td></td>
</tr>
</tbody>
</table>
Put everything in a table:

<table>
<thead>
<tr>
<th>Point</th>
<th>D</th>
<th>f_{xx}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, y)$</td>
<td>0</td>
<td>0</td>
<td>Undetermined</td>
</tr>
<tr>
<td>$(1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td>Local Min</td>
</tr>
<tr>
<td>$(-1, 1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$-\sqrt{2}$</td>
<td>Local Max</td>
</tr>
<tr>
<td>$(-1, -1/\sqrt{2})$</td>
<td>$8e^{-3}$</td>
<td>$\sqrt{2}$</td>
<td>Local Min</td>
</tr>
</tbody>
</table>
From the graph, we see that if $y > 0$, then points $(0, y)$ are where local minima occur, and if $y > 0$, then $(0, y)$ are where local maxima occur. These would be difficult to determine without the graph.
If $D = 0$, some complicated behaviors can occur. In this example, we have

$$f(x, y) = x^3 - 3xy^2$$

Below is the surface, called a “Monkey Saddle”, and the corresponding contour plot.