Summary of Chapter 3

We can think of the chapter as being split into two: General theory, and Computation. First, the general theory.

General Theory, Chapter 3

The goal of the theory was to establish the structure of solutions to the second order DE:

\[y'' + p(t)y' + q(t)y = g(t) \]

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the Wronskian is not zero (at the initial value of time).

2. Theorems:
 - The Existence and Uniqueness Theorem for \(y'' + p(t)y' + q(t)y = g(t) \): If there is an open interval \(I \) on which \(p, q \) and \(g \) exists, and if \(I \) contains the initial time \(t_0 \), then there exists a unique solution to the IVP, valid on \(I \).
 - Principle of Superposition: If \(L \) is a linear operator, and \(y_1, y_2 \) are two functions so that \(L(y_1) = 0 \) and \(L(y_2) = 0 \), then so does any function of the form \(c_1y_1 + c_2y_2 \).
 - Abel’s Theorem.
 If \(y_1, y_2 \) are solutions to \(y'' + p(t)y' + q(t)y = 0 \), then the Wronskian is either always zero or never zero on the interval for which the solutions are valid.
 That is because the Wronskian may be computed as:
 \[W(y_1, y_2)(t) = Ce^{-\int p(t) dt} \]
 - The Fundamental Set of Solutions: \(y'' + p(t)y' + q(t)y = 0 \)
 We can guarantee that we can always find a fundamental set of solutions. We did that by appealing to the Existence and Uniqueness Theorem for the following two initial value problems:
 - \(y_1 \) solves \(y'' + p(t)y' + q(t)y = 0 \) with \(y(t_0) = 1, y'(t_0) = 0 \)
 - \(y_2 \) solves \(y'' + p(t)y' + q(t)y = 0 \) with \(y(t_0) = 0, y'(t_0) = 1 \)

3. The Structure of Solutions to \(y'' + p(t)y' + q(t)y = g(t) \), \(y(t_0) = y_0, y'(t_0) = v_0 \)
 Given that \(y_h \) solves the homogeneous equation, and \(y_p \) solves the forced equation, then the general solution to the forced equation is
 \[y_h + y_p \]
 Or, we can be much more specific:
 Given a fundamental set of solutions to the homogeneous equation, \(y_1, y_2 \), then there is a solution to the initial value problem, written as:
 \[y(t) = C_1y_1(t) + C_2y_2(t) + y_p(t) \]
 where \(y_p(t) \) solves the non-homogeneous equation.

In fact, if we have:

\[y'' + p(t)y' + q(t)y = g_1(t) + g_2(t) + \ldots + g_n(t) \]

we can solve by splitting the problem up into smaller problems:
• y_1, y_2 form a fundamental set of solutions to the homogeneous equation.
• y_{p_1} solves $y'' + p(t)y' + q(t)y = g_1(t)$
• y_{p_2} solves $y'' + p(t)y' + q(t)y = g_2(t)$
• and so on..
• y_{p_n} solves $y'' + p(t)y' + q(t)y = g_n(t)$

and the full solution is:
$$y(t) = C_1 y_1 + C_2 y_2 + y_{p_1} + y_{p_2} + \ldots + y_{p_n}$$

Computation of Solutions, Chapter 3

From the theory, we know that every initial value problem:
$$ay'' + by' + cy = g(t) \quad y(t_0) = y_0 \quad y'(t_0) = v_0$$

has a solution that can be expressed as:
$$y(t) = c_1 y_1 + c_2 y_2 + y_p$$

where y_1, y_2 form a fundamental set of solutions to the homogeneous equation, and $y_p(t)$ is the (particular) solution to the nonhomogeneous equation.

We first consider the homogeneous ODE:

Solving $ay'' + by' + cy = 0$

Form the associated characteristic equation (built by using $y = e^{rt}$ as the ansatz):
$$ar^2 + br + c = 0 \implies r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

so that the solutions depend on the discriminant, $b^2 - 4ac$ in the following way (y_h refers to the solution of the homogeneous equation):

• $b^2 - 4ac > 0 \Rightarrow$ 2 distinct real roots r_1, r_2: $y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$
• $b^2 - 4ac = 0 \Rightarrow$ one real root $r = -b/2a$: $y_h(t) = e^{-b/2a t} (C_1 + C_2 t)$
• $b^2 - 4ac < 0 \Rightarrow$ 2 complex solutions, $r = \lambda \pm i\mu$: $y_h(t) = e^{\lambda t} (C_1 \cos(\mu t) + C_2 \sin(\mu t))$

Solving $y'' + p(t)y' + q(t)y = 0$

Given $y_1(t)$, we can solve for a second linearly independent solution to the homogeneous equation, y_2, by one of two methods:

• By use of the Wronskian: There are two ways to compute this,
 - $W(y_1, y_2) = Ce^{-\int p(t) dt}$ (This is from Abel’s Theorem)
 - $W(y_1, y_2) = y_1 y_2' - y_2 y_1'$

 Therefore, these are equal, and y_2 is the unknown: $y_1 y_2' - y_2 y_1' = Ce^{-\int p(t) dt}$
• Reduction of order, where $y_2 = v(t)y_1(t)$.

Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

- **Method of Undetermined Coefficients**

 This method is motivated by the observation that, a linear operator of the form
 $$L(y) = ay'' + by' + cy,$$
 acting on certain classes of functions, returns the same class. In summary, the table from the text:

<table>
<thead>
<tr>
<th>if $g_1(t)$ is:</th>
<th>The ansatz y_p is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n(t)$</td>
<td>$t^n(a_0 + a_1 t + \ldots + a_n t^n)$</td>
</tr>
<tr>
<td>$P_n(t)e^{at}$</td>
<td>$t^ne^{at}(a_0 + a_1 t + \ldots + a_n t^n)$</td>
</tr>
</tbody>
</table>
 | $P_n(t)e^{at}\sin(\mu t)$ or $\cos(\mu t)$ | $t^ne^{at}((a_0 + a_1 t + \ldots + a_n t^n)\sin(\mu t)$
 | | $+(b_0 + b_1 t + \ldots + b_n t^n)\cos(\mu t)$) |

 The t^n term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or t^2 so that no term of the ansatz is included as a term of the homogeneous solution.

- **Variation of Parameters:** Given
 $$y'' + p(t)y' + q(t)y = g(t),$$
 with y_1, y_2 solutions to the homogeneous equation, we write the ansatz for the particular solution as:
 $$y_p = u_1 y_1 + u_2 y_2$$

 From our analysis, we saw that u_1, u_2 were required to solve:

 $$u_1' y_1 + u_2' y_2 = 0$$
 $$u_1' y_1' + u_2' y_2' = g(t)$$

 From which we get the formulas for u_1' and u_2':

 $$u_1' = -\frac{y_2g}{W(y_1, y_2)} \quad u_2' = \frac{y_1 g}{W(y_1, y_2)}$$