Quick Overview: Complex Numbers

February 23, 2012

1 Initial Definitions

Definition 1 The complex number \(z \) is defined as:

\[
 z = a + bi \tag{1}
\]

where \(a, b \) are real numbers and \(i = \sqrt{-1} \).

Remarks about the definition:

- Engineers typically use \(j \) instead of \(i \).
- Examples of complex numbers:
 \[5 + 2i, \ 3 - \sqrt{2}i, \ 3, \ -5i \]
- Powers of \(i \):
 \[
 \begin{align*}
 i^2 &= -1 & i^3 &= -i \\
 i^4 &= 1 & i^5 &= i \\
 i^6 &= -1 & i^7 &= -i \\
 \vdots
 \end{align*}
 \]
- All real numbers are also complex (by taking \(b = 0 \)).

2 Visualizing Complex Numbers

A complex number is defined by it’s two real numbers. If we have \(z = a + bi \), then:

Definition 2 The real part of \(a + bi \) is \(a \),

\[
 \text{Re}(z) = \text{Re}(a + bi) = a
\]

The imaginary part of \(a + bi \) is \(b \),

\[
 \text{Im}(z) = \text{Im}(a + bi) = b
\]
Figure 1: Visualizing $z = a + bi$ in the complex plane. Shown are the modulus (or length) r and the argument (or angle) θ.

To visualize a complex number, we use the complex plane \mathbb{C}, where the horizontal (or x-) axis is for the real part, and the vertical axis is for the imaginary part. That is, $a + bi$ is plotted as the point (a,b).

In Figure 1, we can see that it is also possible to represent the point $a + bi$, or (a,b) in polar form, by computing its modulus (or size), and angle (or argument):

$$r = |z| = \sqrt{a^2 + b^2} \quad \theta = \arg(z)$$

We have to be a bit careful defining ϕ, since there are many ways to write ϕ (and we could add multiples of 2π as well). Typically, the argument of the complex number $z = a + bi$ is defined to be the 4-quadrant “inverse tangent”\(^1\) that returns $-\pi < \theta \leq \pi$.

That is, formally we can define the argument as:

$$\theta = \arg(a + bi) = \begin{cases}
\tan^{-1}(b/a) & \text{if } a > 0 \\
\tan^{-1}(b/a) + \pi & \text{if } a < 0 \text{ and } b \geq 0 \\
\tan^{-1}(b/a) - \pi & \text{if } a < 0 \text{ and } b < 0 \\
\pi/2 & \text{if } x = 0 \text{ and } y > 0 \\
-\pi/2 & \text{if } x = 0 \text{ and } y < 0 \\
\text{Undefined} & \text{if } x = 0 \text{ and } y = 0
\end{cases}$$

Quad I and IV
Quad II
Quad III
(Upper imag axis)
(Upper imag axis)
The origin

Examples

Find the modulus r and argument θ for the following numbers (Hint: It is easiest to visualize these in the plane):

- $z = -3$: SOLUTION: $r = 3$ and $\theta = \pi$
- $z = 2i$: SOLUTION: $r = 2$ and $\theta = \pi/2$

\(^1\)For example, in Maple this special angle is computed as $\text{arctan}(b,a)$, and in Matlab the command is $\text{atan2}(b,a)$.\)
• \(z = -1 + i \): SOLUTION: \(r = \sqrt{2} \) and \(\theta = \tan^{-1}(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4} \)

• \(z = -3 - 2i \) (Numerical approx from Calculator OK):
SOLUTION: \(r = \sqrt{14} \) and \(\theta = \tan^{-1}(2/3) - \pi \approx 0.588 - \pi \approx -2.55 \text{ rad} \)

3 Operations on Complex Numbers

3.1 The Conjugate of a Complex Number
If \(z = a + bi \) is a complex number, then its conjugate, denoted by \(\bar{z} \), is \(a - bi \). For example,
\[
\begin{align*}
 z &= 3 + 5i \Rightarrow \bar{z} = 3 - 5i \\
 z &= i \Rightarrow \bar{z} = -i \\
 z &= 3 \Rightarrow \bar{z} = 3
\end{align*}
\]
Graphically, the conjugate of a complex number is its mirror image across the horizontal axis. If \(z \) has magnitude \(r \) and argument \(\theta \), then \(\bar{z} \) has the same magnitude with a negative argument.

3.2 Addition/Subtraction, Multiplication/Division
To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately:
\[
(a + bi) \pm (c + di) = (a + c) \pm (b + d)i
\]
To multiply, expand it as if you were multiplying polynomials:
\[
(a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i
\]
and simplify using \(i^2 = -1 \). Note what happens when you multiply a number by its conjugate:
\[
z\bar{z} = (a + bi)(a - bi) = a^2 - abi + abi - b^2i^2 = a^2 + b^2 = |z|^2
\]
Division by complex numbers \(z, w \): \(\frac{z}{w} \), is defined by translating it to real number division (rationalize the denominator):
\[
\frac{z}{w} = \frac{z\bar{w}}{w\bar{w}} = \frac{z\bar{w}}{|w|^2}
\]
Example:
\[
\frac{1 + 2i}{3 - 5i} = \frac{(1 + 2i)(3 + 5i)}{34} = -\frac{7}{34} + \frac{11}{34}i
\]

4 The Polar Form of Complex Numbers

4.1 Euler’s Formula
Any point on the unit circle can be written as \((\cos(\theta), \sin(\theta)) \), which corresponds to the complex number \(\cos(\theta) + i\sin(\theta) \). It is possible to show the following directly, but we’ll use it as a definition:

Definition (Euler’s Formula): \(e^{i\theta} = \cos(\theta) + i\sin(\theta) \).
4.2 Polar Form of $a + bi$:

The polar form is defined as:

$$z = re^{i\theta} \quad \text{where} \quad r = |z| = \sqrt{a^2 + b^2} \quad \theta = \arg(z)$$

4.2.1 Examples

Given the complex number in $a + bi$ form, give the polar form, and vice-versa:

1. $z = 2i$ SOLUTION: Since $r = 2$ and $\theta = \pi/2$, $z = 2e^{i\pi/2}$

2. $z = 2e^{-i\pi/3}$

 We recall that $\cos(\pi/3) = 1/2$ and $\sin(\pi/3) = \sqrt{3}/2$, so

 $$z = 2(\cos(-\pi/3) + i\sin(-\pi/3)) = 2(\cos(\pi/3) - i\sin(\pi/3)) = 1 - \sqrt{3}i$$

5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form:

$$\ln(a + bi) = \ln(re^{i\theta}) = \ln(r) + \ln(e^{i\theta}) = \ln(r) + i\theta$$

The logarithm of zero is left undefined (as in the real case). However, we can now compute the log of a negative number:

$$\ln(-1) = \ln(1 \cdot e^{i\pi}) = i\pi \quad \text{or the log of } i : \quad \ln(i) = \ln(1) + \frac{\pi}{2}i = \frac{\pi}{2}i$$

Note that the usual rules of exponentiation and logarithms still apply.

To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with things like x^x):

$$a^b = e^{b\ln(a)}$$

Example, $2^i = e^{i\ln(2)} = \cos(\ln(2)) + i\sin(\ln(2))$

Example: $\sqrt{1 + i} = (1 + i)^{1/2} = (\sqrt{2}e^{i\pi/4})^{1/2} = (2^{1/4})e^{i\pi/8}$

Example: $i^i = e^{i\ln(i)} = e^{i(i\pi/2)} = e^{-\pi/2}$

6 Real Polynomials and Complex Numbers

If $ax^2 + bx + c = 0$, then the solutions come from the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In the past, we only took real roots. Now we can use complex roots. For example, the roots of $x^2 + 1 = 0$ are $x = i$ and $x = -i$.

Check:

$$(x - i)(x + i) = x^2 + xi - xi - i^2 = x^2 + 1$$

Some facts about polynomials when we allow complex roots:
1. An \(n \text{th} \) degree polynomial can always be factored into \(n \) roots. (Unlike if we only have real roots!) This is the **Fundamental Theorem of Algebra**.

2. If \(a + bi \) is a root to a real polynomial, then \(a - bi \) must also be a root. This is sometimes referred to as “roots must come in conjugate pairs”.

7 Exercises

1. Suppose the roots to a cubic polynomial are \(a = 3, b = 1 - 2i \) and \(c = 1 + 2i \). Compute \((x - a)(x - b)(x - c)\).

2. Find the roots to \(x^2 - 2x + 10 \). Write them in polar form.

3. Show that:

 \[
 \text{Re}(z) = \frac{z + \bar{z}}{2} \quad \text{Im}(z) = \frac{z - \bar{z}}{2i}
 \]

4. For the following, let \(z_1 = -3 + 2i, z_2 = -4i \)

 (a) Compute \(z_1 \bar{z}_2, \frac{z_2}{z_1} \)

 (b) Write \(z_1 \) and \(z_2 \) in polar form.

5. In each problem, rewrite each of the following in the form \(a + bi \):

 (a) \(e^{1+2i} \)

 (b) \(e^{2-3i} \)

 (c) \(e^{i\pi} \)

 (d) \(2^{1-i} \)

 (e) \(e^{2-\frac{5}{2}i} \)

 (f) \(\pi^i \)

6. For fun, compute the logarithm of each number:

 (a) \(\ln(-3) \)

 (b) \(\ln(-1 + i) \)

 (c) \(\ln(2e^{3i}) \)