6. Use the Ratio Test:
\[
\lim_{n \to \infty} \frac{|x - x_0|^{n+1}}{n+1} \cdot \frac{n}{|x - x_0|^n} = |x - x_0| \lim_{n \to \infty} \left(\frac{n}{n+1} \right) = |x - x_0|
\]

The series converges absolutely if $|x - x_0| < 1$, and diverges if $|x - x_0| > 1$, so the radius is 1.

8. Use the Ratio Test:
\[
\lim_{n \to \infty} \frac{(n+1)!|x|^{n+1}}{(n+1)^{n+1} |x|^n n!} = |x| \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n
\]

Do you recall the technique where we exponentiate to use L'Hospital’s rule?
\[
\left(\frac{n}{n+1} \right)^n = e^{n \ln \left(\frac{n}{n+1} \right)}
\]

so now we take the limit of the exponent:
\[
\lim_{n \to \infty} n \ln \left(\frac{n}{n+1} \right) = \lim_{n \to \infty} \frac{\ln \left(\frac{n}{n+1} \right)}{\frac{1}{n}}
\]

which is of the form 0/0. Continue with L'Hospital:
\[
\lim_{n \to \infty} \ln \left(\frac{n}{n+1} \right) = \lim_{n \to \infty} \frac{-\frac{1}{n}}{-\frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{n(n+1)} \cdot -\frac{n^2}{1} = \lim_{n \to \infty} \frac{-n}{n+1} = -1
\]

Therefore,
\[
\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} e^{n \ln \left(\frac{n}{n+1} \right)} = e^{-1}
\]

And the ratio test:
\[
\frac{|x|}{e} < 1 \implies |x| < e
\]

12. Actually, this is kind of a “trick question”, although the usual procedure still works:
\[
f(x) = x^2 \implies f(-1) = 1
\]
\[
f'(x) = 2x \implies f'(-1) = -2
\]
\[
f''(x) = 2 \implies f''(-1) = 2
\]
Therefore,
\[x^2 = 1 - 2(x + 1) + \frac{2}{2!}(x + 1)^2 = 1 - 2(x + 1) + (x + 1)^2 \]
(Notice that if you expand and simplify this, you get \(x^2 \) back.)

This is not an infinite series; no matter what \(x \) is, you can always add those three terms together: The radius of convergence is \(\infty \).

14. At issue here is to find a pattern in the derivatives, so we can write the general form for the \(n^{th} \) derivative.

\[
\begin{align*}
 n = 0 & \quad f(x) = (1 + x)^{-1} & \quad f(0) = 1 \\
 n = 1 & \quad f'(x) = -(1 + x)^{-2} & \quad f'(0) = -1 \\
 n = 2 & \quad f''(x) = (-1)(-2)(1 + x)^{-3} & \quad f''(0) = 2 \\
 n = 3 & \quad f'''(x) = (-1)(-2)(-3)(1 + x)^{-4} & \quad f'''(0) = -3!
\end{align*}
\]

From this we see that:
\[f^{(n)}(0) = (-1)^n n! \]

The Taylor series (actually, the Maclaurin series) is:
\[
\frac{1}{1 + x} = \sum_{n=0}^{\infty} (-1)^n n! - x^n = \sum_{n=0}^{\infty} (-x)^n
\]
and this converges if \(|x| < 1\) (its an alternating geometric series).

Alternatively, we could see this directly using the sum of the geometric series:
\[
\sum_{n=0}^{\infty} (-x)^n = \frac{1}{1 - (-x)} = \frac{1}{1 + x}
\]

18. Given that
\[y = \sum_{n=0}^{\infty} a_n x^n \]

Compute \(y' \) and \(y'' \) by writing out the first four terms of each to get the general term. Show that, if \(y'' = y \), then the coefficients \(a_0 \) and \(a_1 \) are arbitrary, and show the given recursion relation.

\[
\begin{align*}
 y &= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots = \sum_{n=0}^{\infty} a_n x^n \\
 y' &= a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \ldots = \sum_{n=0}^{\infty} (n + 1)a_{n+1} x^n \\
 y'' &= 2a_2 + 3 \cdot 2a_3 x + 4 \cdot 3a_4 x^2 + 5 \cdot 4a_5 x^3 + \ldots = \sum_{n=0}^{\infty} (n + 2)(n + 1)a_{n+2} x^n
\end{align*}
\]
If \(y'' = y \), then the coefficients must match up, power by power:

\[
a_0 = 2a_2 \quad a_1 = 6a_3 \quad a_2 = 12a_4 \quad \ldots \quad a_n = (n + 2)(n + 1)a_{n+2}
\]

Problems 19-23 are some symbolic manipulation problems.

19. Rewrite the left side equation so that the powers of \(x \) match up.

20. Much the same. In this problem, we see that the first sum starts with a constant term, the second sum starts with \(x^1 \), and so does the sum on the left. Therefore, we would rewrite each sum to start with \(x^1 \) power:

\[
\sum_{k=1}^{\infty} a_{k+1} x^k = a_1 + \sum_{n=1}^{\infty} a_{n+1} x^n
\]

\[
\sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{n=1}^{\infty} a_{n-1} x^n
\]

Now each sum begins with the same power of \(x \),

\[
\sum_{k=1}^{\infty} a_{k+1} x^k + \sum_{k=0}^{\infty} a_k x^{k+1} = a_1 + \sum_{n=1}^{\infty} a_{n+1} x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = a_1 + \sum_{n=0}^{\infty} (a_{n+1} + a_{n-1}) x^n
\]

21. You may use a different symbol for the summation index if you like (it is a dummy variable):

\[
\sum_{n=2}^{\infty} n(n - 1)a_n x^{n-2}
\]

We would like this to be indexed using \(x^k \), \(k = 0, 1, 2, \ldots \) This means that \(k = n - 2 \) or \(n = k + 2 \). Making the substitutions in each term,

\[
\sum_{n=2}^{\infty} n(n - 1)a_n x^{n-2} = \sum_{k=0}^{\infty} (k + 2)(k + 1)a_{k+2} x^k
\]

22. In this case, the powers begin with \(x^2 \), so we let \(k = n + 2 \) or \(n = k - 2 \), with \(k = 2, 3, 4, \ldots \):

\[
\sum_{n=0}^{\infty} a_n x^{n+2} = \sum_{k=2}^{\infty} a_{k-2} x^k
\]

23. Take care of the product with \(x \) first,

\[
x \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{k=0}^{\infty} a_k x^k = \sum_{n=1}^{\infty} n a_n x^n + \sum_{k=0}^{\infty} a_k x^k
\]

The first sum could begin with zero- It would make the first term of the sum zero. Therefore,

\[
\sum_{n=0}^{\infty} n a_n x^n + \sum_{k=0}^{\infty} a_k x^k = \sum_{n=1}^{\infty} (n + 1) a_n x^n
\]