Homework: Sections 7.8-7.9

The homework assigned was the “Extra Practice” with Bessel functions (first problem was non-Maple, the rest was Maple). The first solution is in the solution for Homework Set 10.
For Section 7.8, we had 1, 2, 5(d,f), 7. and for 7.9: 1(a,b), 2(a,b), 5*.

7.8.1 (I meant to assign (a-c) only)

The boundary value problem for a vibrating annular membrane $1 < r < 2$ is

$$\frac{d}{dr} \left(r \frac{df}{dr} \right) + \left(\lambda r^2 - \frac{m^2}{r^2} \right) f = 0$$

with $f(1) = f(2) = 0$, and $m = 0, 1, 2, \ldots$.

(a) Show that $\lambda > 0$.

SOLUTION: This is a Sturm-Liouville problem. Considering the Rayleigh quotient, any function that satisfies the boundary condition will be zero along the boundary so that, as is typical,

$$\lambda = \frac{\iint_R |\nabla \phi|^2 \, dxdy}{\iint_R \phi^2 \, dxdy} \geq 0$$

Can $\lambda = 0$? If so, then ϕ is constant, and since $\phi = 0$ on the boundary, then $\phi = 0$ everywhere.
Therefore, $\lambda > 0$.

(b) Obtain an expression that determines the eigenvalues.

SOLUTION: The solution to the BVP is

$$f(r) = C_1 J_m(\sqrt{\lambda}r) + C_2 Y_m(\sqrt{\lambda}r)$$

with $f(1) = f(2) = 0$, we have the system of equations:

$$0 = C_1 J_m(\sqrt{\lambda}) + C_2 Y_m(\sqrt{\lambda})$$
$$0 = C_1 J_m(2\sqrt{\lambda}) + C_2 Y_m(2\sqrt{\lambda})$$

For this system to have a non-trivial answer, the determinant of the coefficient matrix must be zero (so that the coefficient matrix is not invertible):

$$J_m(\sqrt{\lambda})Y_m(2\sqrt{\lambda}) - J_m(2\sqrt{\lambda})Y_m(\sqrt{\lambda}) = 0$$

It’s easy to plot this expression in Maple, for example, if we needed to estimate the zeros.
(c) For what value of \(m \) does the smallest eigenvalue occur? (Do this problem graphically) We see that for \(m = 0 \), the smallest eigenvalue \(\lambda \approx 1.77 \).

7.8.2 Consider the heat equation on a quarter circle

\[u_t = k \nabla^2 u \]

BCs

\[u(r, 0, t) = 0 \quad u(r, \pi/2, t) = 0 \]

ICs

\[u(r, \theta, 0) = G(r, \theta) \]

(a) Find the BVP in \(r \).

SOLUTION: Using separation of variables, define \(u(r, \theta, t) = f(r)g(\theta)h(t) \). Substituting this into the polar form of the Laplacian will give us:

\[
fg'k = k \left(\frac{1}{r} \frac{\partial}{\partial r} (rf'gh) + \frac{1}{r^2} (fg''h) \right)
\]

Divide both sides by \(kfg \), and we get:

\[
\frac{h'}{kh} = \frac{1}{rf} (rf')' + \frac{1}{r^2} \frac{g''}{g} = -\lambda
\]

Therefore, multiplying the second part of the equation by \(r \),

\[
h' = -k\lambda h \quad \frac{r}{f} (rf')' + \frac{g''}{g} = -\lambda r^2
\]

so that

\[
\frac{g''}{g} = -\lambda r^2 - \frac{r}{f} (rf')' = -\mu
\]

That gives us the ODE in \(\theta \): \(g'' = -\mu g \), and for the radial equation we have:

\[-(\lambda r^2 - \mu) = \frac{r}{f} (rf')' \]

which is equivalent to the form in the text. From the given boundary conditions, we have \(f(a) = 0 \) and \(f(0) \) is bounded.

(b) The radial BVP is a Bessel equation, if we take \(\mu = m^2 \). In that case, the solution to the BVP is

\[f(r) = C_1 J_m(\sqrt{\lambda}r) \]

and with \(f(a) = 0 \), we have

\[\sqrt{\lambda}a = z_{mn} \quad \Rightarrow \quad \lambda = \left(\frac{z_{mn}}{a} \right)^2 \]
(c) Part (c) notes that, since \(z_{m0} \) is the first zero of the Bessel function of order \(m \), then
\[
J_m \left(\frac{z_{m0}}{a} r \right)
\]
will not be zero between \(r = 0 \) and \(r = a \).

(d) Solve the IVP.
SOLUTION: We’ve already solved the radial equation:
\[
f_{mn}(r) = J_m \left(\sqrt{\lambda_{mn}} r \right)
\]
Now, the general solution and BCs for \(g \) are:
\[
g(\theta) = C_1 \cos(m\theta) + C_2 \sin(m\theta) \quad g(0) = 0, \quad g(\pi/2) = 0
\]
Putting the BCs in, we get \(C_1 = 0 \) and \(m = 2k \) (\(m \) must be an even integer- Since we’re already using \(k \), we’ll substitute \(2m \) for \(m \)). so we could write:
\[
g_m(\theta) = \sin(2m\theta)
\]
and finally, in time we have
\[
T_{mn}(t) = e^{-k\lambda_{mn} t}
\]
Therefore, the overall solution is the superposition (we won’t use \(m = 0 \) since that will simply zero out the term in the sum):
\[
u(r, \theta, t) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{mn} J_{2m} \left(\sqrt{\lambda_{mn}} r \right) \sin(2m\theta) e^{-k\lambda_{mn} t}
\]
With \(u(r, \theta, 0) = G(r, \theta) \), we have (swapping the sum for convenience):
\[
G(r, \theta) = \sum_{m=1}^{\infty} \left[\sum_{n=0}^{\infty} A_{mn} J_{2m} \left(\sqrt{\lambda_{mn}} r \right) \right] \sin(2m\theta) = \sum_{m=1}^{\infty} F_m(r) \sin(2m\theta)
\]
so that
\[
F_m(r) = \frac{\int_{0}^{\pi/2} G(r, \theta) \sin(2m\theta) d\theta}{\int_{0}^{\pi/2} \sin^2(2m\theta) d\theta} = \frac{4}{\pi} \int_{0}^{\pi/2} G(r, \theta) \sin(2m\theta) d\theta
\]
And
\[
A_{mn} = \frac{\int_{0}^{a} F_m(r) J_{2m} \left(\sqrt{\lambda_{mn}} r \right) r \, dr}{\int_{0}^{a} J_{2m}^2 \left(\sqrt{\lambda_{mn}} r \right) r \, dr}
\]
7.8.5(d,f) Use Maple to sketch these.

7.8.7 This is a change of variables problem (good practice!).
Given Bessel’s equation
\[z^2 f''(z) + z f'(z) + (z^2 - m^2) f(z) = 0 \]
Let \(f(z) = \frac{y(z)}{\sqrt{z}} = y z^{-1/2} \)
and find the corresponding ODE in terms of \(y \).
SOLUTION: This is a straightforward application of the product/chain rules.
\[
 f'(z) = y' z^{-1/2} - \frac{1}{2} y z^{-3/2}
\]
so \(z f'(z) = y' \sqrt{z} - \frac{1}{2} y z^{-1/2} \). Similarly,
\[
 f''(z) = y'' z^{-1/2} - y' z^{-3/2} + \frac{3}{4} y z^{-5/2}
\]
so that \(z^2 f''(z) = y'' z^{3/2} - y' z^{1/2} + \frac{3}{4} y z^{-1/2} \). Put these together, divide by \(z^{3/2} \) and you’ll get the desired result (just a little algebra).

7.9.1 Before we look at 7.9.1/7.9.2, we note that the separation of variables stage will be the same for this problem and the next. We summarize that here:
In each problem, let \(u(r, \theta, z) = f(r) g(\theta) h(z) \). Substituting this into Laplace’s equation in polar coordinates results in the following ODEs:
\[
\bullet \text{ Height } z: \quad h'' = \lambda h
\]
\[
\bullet \text{ Angle } \theta: \quad g'' = -m^2 g
\]
The text gives physical reasons for \(g \), but we could solve for it as well given boundary conditions. In particular,
\[
g_m(\theta) = C_1 \cos(m \theta) + C_2 \sin(m \theta)
\]
\[
\bullet \text{ Radius } r: \quad r (r f')' + (\lambda r^2 - m^2) f = 0
\]
Furthermore, here we assume bounded solutions, so \(f_{mn} = J(\sqrt{\lambda_{mn}} r) \)
Now we need the individual boundary conditions to finish our solutions.
(a) \(u(r, \theta, 0) = \alpha(r, \theta) \quad u(r, \theta, H) = 0 \quad u(a, \theta, z) = 0 \)
This means that we have our usual conditions on λ:

$$J(\sqrt{\lambda_{mn}}a) = 0 \quad \Rightarrow \quad \lambda_{mn} = \frac{z_{mn}^2}{a^2}$$

and therefore, the general solution in h uses hyperbolic sine and cosine. Because we want the expression to be 0 at $z = H$, we’ll use the $H - z$ argument. That is,

$$g(z) = C_1 \cosh(\sqrt{\lambda_{mn}}(H - z)) + C_2 \sinh(\sqrt{\lambda_{mn}}(H - z))$$

with $g(H) = 0$, $C_1 = 0$, so the eigenfunction is the hyperbolic sine.

We don’t have any extra conditions on θ, so we’ll need to keep both of those. Therefore, we have:

$$u(r, \theta, z) = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (A_{mn} \cos(m\theta) + B_{mn} \sin(m\theta)) J_m(\sqrt{\lambda_{mn}}r) \sinh(\sqrt{\lambda_{mn}}(H - z))$$

For the initial conditions, we could write this as:

$$\alpha(r, \theta) = \sum_{m=0}^{\infty} F_m(r) \cos(m\theta) + G_m(r) \sin(m\theta)$$

so that

$$F_0(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \alpha(r, \theta) \, d\theta$$

$$F_m(r) = \frac{1}{\pi} \int_{-\pi}^{\pi} \alpha(r, \theta) \cos(m\theta) \, d\theta, \quad m \neq 0$$

and

$$G_m(r) = \frac{1}{\pi} \int_{-\pi}^{\pi} \alpha(r, \theta) \sin(m\theta) \, d\theta$$

Once these are computed, we can compute the constants A_{mn}, B_{mn}:

$$F_m(r) = \sum_{n=1}^{\infty} A_{mn} J_m(\sqrt{\lambda_{mn}}r) \sinh(\sqrt{\lambda_{mn}}(H))$$

so that

$$A_{mn} = \frac{1}{\sinh(\sqrt{\lambda_{mn}}(H))} \frac{\int_0^{a} F_m(r) J_m(\sqrt{\lambda_{mn}}r) \, r \, dr}{\int_0^{a} J_m^2(\sqrt{\lambda_{mn}}r) \, r \, dr}$$

and similarly,

$$B_{mn} = \frac{1}{\sinh(\sqrt{\lambda_{mn}}(H))} \frac{\int_0^{a} G_m(r) J_m(\sqrt{\lambda_{mn}}r) \, r \, dr}{\int_0^{a} J_m^2(\sqrt{\lambda_{mn}}r) \, r \, dr}$$
(b) Is part (b) identical to (a)? Almost- The only change is that
\[\alpha(r, \theta) = \alpha(r) \sin(7\theta) \]

What does this change to the previous solution? You should focus on the computation of \(F_m(r) \) and \(G_m(r) \). Since we are multiplying our basis functions by \(\sin(7\theta) \), these coefficients are all zero except for \(G_7(\theta) \). Therefore, our solution is much simpler- We replace the sum through \(m \) by \(m = 7 \):

\[u(r, \theta, z) = \sum_{n=1}^{\infty} B_n \sin(7\theta) J_7(\sqrt{\lambda_7 n} r) \sinh(\sqrt{\lambda_7 n}(H - z)) \]

where \(B_n = B_{7n} \) as in the previous answer.

7.9.2 Very similar to 7.9.1- If you have questions, see me.

7.9.5* Included below (also in HW set 10)
Determine the three ODEs obtained by separating variables for Laplace’s equation in spherical coordinates:

\[0 = \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) \frac{\partial u}{\partial \phi} \right) + \frac{1}{\sin^2(\phi)} \left(\frac{\partial^2 u}{\partial \theta^2} \right) \]

With \(u(r, \theta, \phi) = f(r)q(\theta)g(\phi) \), we substitute in:

\[0 = \frac{\partial}{\partial r} \left(r^2 f' q g \right) + \frac{1}{\sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) f q g' \right) + \frac{1}{\sin^2(\phi)} \left(f q'' g \right) \]

Following through with the usual separation, we should end up with something like:

\[\frac{1}{f} \frac{\partial}{\partial r} \left(r^2 f' \right) = -\lambda \quad \Rightarrow \quad r^2 f'' + 2r f' + \lambda f = 0 \]

(which is a Cauchy-Euler equation) and

\[\frac{1}{g \sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) q' \right) + \frac{1}{q \sin^2(\phi)} (q'') = -\lambda \]

To separate, we need to multiply by \(\sin^2(\phi) \) so that \(q(\theta) \) is by itself:

\[\frac{\sin(\phi)}{g} \frac{\partial}{\partial \phi} \left(\sin(\phi) q' \right) + \frac{q''}{q} = -\lambda \sin^2(\phi) \]

And now the variables separate:

\[\frac{\sin(\phi)}{g} \frac{\partial}{\partial \phi} \left(\sin(\phi) q' \right) + \lambda \sin^2(\phi) = -\frac{q''}{q} = \mu \]

(The sign of this is arbitrary at this point) Then:
• Radius: \(r^2 f'' + 2rf' + \lambda f = 0 \)
• Angle \(\theta \): \(q'' = -\mu q \)
• Angle \(\phi \):
\[
\sin(\phi) \frac{\partial}{\partial \phi} (\sin(\phi)g') + (\lambda \sin^2 \phi - \mu)g = 0
\]