Homework: Vector Norms

How to Measure Distances Between Things in \(\mathbb{R}^n \)

Definition: The norm of a vector \(x \in \mathbb{R}^n \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R} \), denoted by \(\| \cdot \| \), so that the following are properties are satisfied:

1. \(\|x\| \geq 0 \), and \(\|x\| = 0 \) iff \(x = 0 \).
2. \(\|cx\| = |c|\|x\| \), for all scalars \(c \).
3. \(\|x + y\| \leq \|x\| + \|y\| \) (Triangle Inequality)

Definition: Given a vector space \(X \) and a norm \(\| \cdot \| \), the distance between two vectors \(x, y \) is \(\|x - y\| \).

Definition: The \(p \)-norm of a vector \(x \in \mathbb{R}^n \) is

\[
\|x\|_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{1/p}
\]

In particular,

\[
\|x\|_1 = |x_1| + |x_2| + \ldots + |x_n| \quad \|x\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}
\]

And, we will define the “infinity norm” as:

\[
\|x\|_\infty = \max_i \{|x_i|\}
\]

Exercise Set 1

1. Show that \(\|x\|_\infty \) satisfies the three parts in the definition of a norm.

2. What if two vectors were the same except for a single coordinate (without loss of generality, make it the first coordinate). What would the distance between them be under the \(1-, 2- \) and \(\infty \) norms?

3. If two vectors (in \(\mathbb{R}^n \)) are within \(\epsilon \) of each other in the \(\infty \) norm, how close together are they in the \(1- \) norm? (Hint: Start with definitions)

4. If two vectors (in \(\mathbb{R}^n \)) were within \(\epsilon \) of each other in the \(1- \) norm, how close together are they in the \(\infty \) norm?

5. Let \(F(c) = F(c_1,c_2,\ldots, c_n) = c_1a_1 + c_2a_2 + \ldots + c_na_n \), where every \(c_i \geq 0 \), \(\sum c_i = 1 \), and \(a_1, a_2, \ldots, a_n \) are given, fixed numbers. Find the maximum value of \(F \), and the \(c \) where it occurs. (If you get stuck, try putting in some numbers for the \(a_i \) and simplifying the problem- For example, find the max of \(3c_1 + 5c_2 \))

6. Same function as before, except that the values of \(c_i \) are changed: This time, the only restriction is \(|c_i| = 1 \) for each \(i \).