Processing math: 2%

\def\nsg{\mathrel{\triangleleft}}

Definition 2.2.1 Let U(G) be the set of commutators of the group G: U(G)=\{xyx^{-1}y^{-1}|x,y\in G\}. The commutator subgroup of G, denoted G', is the smallest subgroup containing U(G), that is, G'=\langle U(G)\rangle. \square

Lemma 2.2.2 If X is any subset of G and for all g\in G, gXg^{-1}\subseteq X, then \langle X\rangle is a normal subgroup of G.

Proof. Note that the hypothesis implies that for all g\in G, X\subseteq g^{-1}Xg. Suppose that y\in \langle X\rangle; we need to show that for all g\in G, gyg^{-1}\in \langle X\rangle. Let H=g^{-1}\langle X\rangle g; H is a subgroup of G, called a conjugate of \langle X\rangle (this is an easy exercise). Since H=g^{-1}\langle X\rangle g \supseteq g^{-1}Xg \supseteq X, H is a subgroup containing X and therefore H\supseteq \langle X\rangle, so y\in H. Now gyg^{-1}\in gHg^{-1}=gg^{-1}\langle X\rangle gg^{-1} =\langle X\rangle. \qed

Lemma 2.2.3 G'\nsg G.

Proof. It suffices to check that gU(G)g^{-1}\subseteq U(G), that is, that for any x, y, and g in G, gxyx^{-1}y^{-1}g^{-1} is a commutator. Write \eqalign{ gxyx^{-1}y^{-1}g^{-1}&=(gxg^{-1})(gyg^{-1})(gx^{-1}g^{-1})(gy^{-1}g^{-1})\cr &=uvu^{-1}v^{-1},\cr } where u=gxg^{-1} and v=gyg^{-1}. \qed

Lemma 2.2.4 G/G' is abelian.

Proof. We need to show that xyG'=yxG' for all x and y in G. By properties of cosets, this is true if and only if (yx)^{-1}xy\in G'. This is true because (yx)^{-1}xy=x^{-1}y^{-1}xy\in U(G)\subseteq G'. \qed

Lemma 2.2.5 If H\nsg G and G/H is abelian, then H\supseteq G'.

Proof. For any x and y in G, xyH=yxH, so x^{-1}y^{-1}xyH=H or x^{-1}y^{-1}xy\in H—that is, H contains every commutator, so H\supseteq G'. \qed

Definition 2.2.6 G^{(0)}=G and G^{(k)}=\left(G^{(k-1)}\right)' for k\ge 1. \square

Theorem 2.2.7 G is solvable iff G^{(k)}=\{e\} for some k.

Proof. If G^{(k)}=\{e\} then \{e\}=G^{(k)}\nsg G^{(k-1)} \nsg\cdots\nsg G''\nsg G'\nsg G and G^{(i-1)}/G^{(i)} is abelian.

Suppose \{e\}=N_k\nsg N_{k-1}\nsg\cdots\nsg N_1\nsg N_0=G and N_i/N_{i+1} is abelian. By lemma 2.2.5, N_1\supseteq G', N_2\supseteq N_1'\supseteq G'', and by an easy induction, N_k\supseteq G^{(k)}, so \{e\}=G^{(k)}. \qed

Lemma 2.2.8 G^{(i)}\nsg G for all i.

Proof. Suppose that N\nsg G; we prove that N'\nsg G. Suppose g\in G and u\in N'; we need to prove that gug^{-1}\in N'. By lemma 2.2.2, it suffices to prove that if u\in U(N) then gug^{-1}\in U(N). This is almost identical to the proof of lemma 2.2.3. Now an easy induction completes the proof. \qed

Lemma 2.2.9 Let G=S_n, n\ge 5. For every k, G^{(k)} contains every 3-cycle in S_n.

Proof. Suppose N\nsg G and N contains all 3-cycles, so N' contains the commutator (123)(145)(321)(541)=(124). N' is normal in G, so for all \pi\in S_n, \pi(124)\pi^{-1} \in N'. Choose \pi so that \pi(1)=i, \pi(2)=j, \pi(4)=k. Then (ijk)=\pi(124)\pi^{-1}, so every 3-cycle is in N'.

Now we prove the lemma by induction on k. G\nsg G and G contains all 3-cycles, so G' contains all 3-cycles. By the induction hypothesis, G^{(k)} contains all 3-cycles. By the previous lemma, G^{(k)}\nsg G, so G^{(k+1)}=\left(G^{(k)}\right)' contains all 3-cycles. \qed

Theorem 2.2.10 S_n is not solvable when n\ge 5.

Proof. If S_n is solvable then for some k, G^{(k)}=\{e\}. But also G^{(k)} contains all 3-cycles, a contradiction. \qed